Skip to main content

Advertisement

Log in

Partitioning and Degradation of Triclosan and Formation of Methyl-Triclosan in Water-Sediment Systems

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Adsorption and degradation processes of triclosan (TCS) were studied in the laboratory using field-collected sediments of different physicochemical properties. Batch equilibrium experiment indicated that adsorption isotherms were fitted well to both linear and Freundlich model with linear sorption coefficients (K d) varied from 147 to 1,425 mL μg−1. The sediment with a higher organic carbon content and a lower pH value had the greatest adsorption capability. Degradation experiment showed that triclosan was relatively stable in water with calculated half-life values ranged from 89 to 161 days. No degradation in sterilized water suggested that the loss of triclosan was due to biological processes. Degradation was more rapid in water-sediment system than in water, and the calculated half-life value in water-sediment systems ranged from 32 to 62 days. Methylation of triclosan was observed in all studied sediments, but the amount of methyl-triclosan (M-TCS) accounted for less than 5 % of the degradated TCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adam, G., & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology and Biochemistry, 33(7–8), 943–951.

    Article  CAS  Google Scholar 

  • Aranami, K., & Readman, J. W. (2007). Photolytic degradation of triclosan in freshwater and seawater. Chemosphere, 66(6), 1052–1056.

    Article  CAS  Google Scholar 

  • Balmer, M. E., Poiger, T., Droz, C., Romanin, K., Bergqvist, P.-A., Müller, M. D., et al. (2004). Occurrence of methyl triclosan, a transformation product of the bactericide triclosan, in fish from various lakes in Switzerland. Environmental Science & Technology, 38(2), 390–395.

    Article  CAS  Google Scholar 

  • Behera, S. K., Oh, S.-Y., & Park, H.-S. (2010). Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid. Journal of Hazardous Materials, 179(1–3), 684–691.

    Article  CAS  Google Scholar 

  • Bester, K. (2003). Triclosan in a sewage treatment process—balances and monitoring data. Water Research, 37(16), 3891–3896.

    Article  CAS  Google Scholar 

  • Bester, K. (2005). Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Archives of Environmental Contamination and Toxicology, 49(1), 9–174.

    Article  CAS  Google Scholar 

  • Butler, E., Whelan, M. J., Sakrabani, R., & van Egmond, R. (2012). Fate of triclosan in field soils receiving sewage sludge. Environmental Pollution, 167, 101–109.

    Article  CAS  Google Scholar 

  • Cantwell, M. G., Wilson, B. A., Zhu, J., Wallace, G. T., King, J. W., Olsen, C. R., et al. (2010). Temporal trends of triclosan contamination in dated sediment cores from four urbanized estuaries: evidence of preservation and accumulation. Chemosphere, 78(4), 347–352.

    Article  CAS  Google Scholar 

  • Chau, W. C., Wu, J.-I., & Cai, Z. (2008). Investigation of levels and fate of triclosan in environmental waters from the analysis of gas chromatography coupled with ion trap mass spectrometry. Chemosphere, 73(1, Supplement), S13–S17.

    Article  CAS  Google Scholar 

  • Chen, X., Nielsen, J. L., Furgal, K., Liu, Y., Lolas, I. B., & Bester, K. (2011). Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions. Chemosphere, 84(4), 452–456.

    Article  CAS  Google Scholar 

  • Coogan, M. A., & Point, T. W. L. (2008). Snail bioaccumulation of triclocarban, triclosan, and methyltriclosan in a north texas, usa, stream affected by wastewater treatment plant runoff. Environmental Toxicology and Chemistry, 27(8), 1788–1793.

    Article  CAS  Google Scholar 

  • Cornelissen, G., Gustafsson, Ö., Bucheli, T. D., Jonker, M. T. O., Koelmans, A. A., & van Noort, P. C. M. (2005). Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environmental Science & Technology, 39(18), 6881–6895.

    Article  CAS  Google Scholar 

  • Dann, A. B., & Hontela, A. (2011). Triclosan: environmental exposure, toxicity and mechanisms of action. Journal of Applied Toxicology, 31(4), 285–311.

    Article  CAS  Google Scholar 

  • Drury, B., Scott, J., Rosi-Marshall, E. J., & Kelly, J. J. (2013). Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environmental Science & Technology, 47(15), 8923–8930.

    CAS  Google Scholar 

  • Fernandes, M., Shareef, A., Kookana, R., Gaylard, S., Hoare, S., & Kildea, T. (2011). The distribution of triclosan and methyl-triclosan in marine sediments of Barker Inlet, South Australia. Journal of Environmental Monitoring, 13(4), 801–806.

    Article  CAS  Google Scholar 

  • González-Mariño, I., Rodríguez, I., Quintana, J., & Cela, R. (2010). Matrix solid-phase dispersion followed by gas chromatography-mass spectrometry for the determination of triclosan and methyl triclosan in sludge and sediments. Analytical and Bioanalytical Chemistry, 398(5), 2289–2297.

    Article  Google Scholar 

  • Green, V. S., Stott, D. E., & Diack, M. (2006). Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biology and Biochemistry, 38(4), 693–701.

    Article  CAS  Google Scholar 

  • Halden, R. U., & Paull, D. H. (2005). Co-occurrence of triclocarban and triclosan in U.S. water resources. Environmental Science & Technology, 39(6), 1420–1426.

    Article  CAS  Google Scholar 

  • Jing, L.-D., Wu, C.-X., Liu, J.-T., Wang, H.-G., & Ao, H.-Y. (2013). The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects. Ecological Engineering, 52, 167–174.

    Article  Google Scholar 

  • Karnjanapiboonwong, A., Morse, A., Maul, J., & Anderson, T. (2010). Sorption of estrogens, triclosan, and caffeine in a sandy loam and a silt loam soil. Journal of Soils and Sediments, 10(7), 1300–1307.

    Article  CAS  Google Scholar 

  • Katz, D. R., Cantwell, M. G., Sullivan, J. C., Perron, M. M., Burgess, R. M., Ho, K. T., et al. (2013). Factors regulating the accumulation and spatial distribution of the emerging contaminant triclosan in the sediments of an urbanized estuary: Greenwich Bay, Rhode Island, USA. Science of the Total Environment, 443, 123–133.

    Article  CAS  Google Scholar 

  • Kookana, R. S., Ying, G.-G., & Waller, N. J. (2011). Triclosan: its occurrence, fate and effects in the Australian environment. Water Science & Technology, 63(4).

  • Kwon, J.-W., & Xia, K. (2012). Fate of triclosan and triclocarban in soil columns with and without biosolids surface application. Environmental Toxicology and Chemistry, 31(2), 262–269.

    Article  CAS  Google Scholar 

  • Latch, D. E., Packer, J. L., Stender, B. L., VanOverbeke, J., Arnold, W. A., & McNeill, K. (2005). Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environmental Toxicology and Chemistry, 24(3), 517–525.

    Article  CAS  Google Scholar 

  • Lin, H., Hu, Y.-Y., Zhang, X.-Y., Guo, Y.-P., & Chen, G.-R. (2011). Sorption of triclosan onto sediments and its distribution behavior in sediment–water–rhamnolipid systems. Environmental Toxicology and Chemistry, 30(11), 2416–2422.

    Article  CAS  Google Scholar 

  • Lindström, A., Buerge, I. J., Poiger, T., Bergqvist, P.-A., Müller, M. D., & Buser, H.-R. (2002). Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environmental Science & Technology, 36(11), 2322–2329.

    Article  Google Scholar 

  • OECD Test No. 106. (2000). Adsorption-desorption using a batch rquilibrium method. OECD Publishing.

  • OECD Test No. 308. (2002). Aerobic and anaerobic transformation in aquatic sediment systems. OECD Publishing.

  • Orvos, D. R., Versteeg, D. J., Inauen, J., Capdevielle, M., Rothenstein, A., & Cunningham, V. (2002). Aquatic toxicity of triclosan. Environmental Toxicology and Chemistry, 21(7), 1338–1349.

    Article  CAS  Google Scholar 

  • Raut, S. A., & Angus, R. A. (2010). Triclosan has endocrine-disrupting effects in male western mosquitofish, Gambusia affinis. Environmental Toxicology and Chemistry, 29(6), 1287–1291.

    CAS  Google Scholar 

  • Rule, K. L., Ebbett, V. R., & Vikesland, P. J. (2005). Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan. Environmental Science & Technology, 39(9), 3176–3185.

    Article  CAS  Google Scholar 

  • Salloum, M. J., Dudas, M. J., & McGill, W. B. (2001). Variation of 1-naphthol sorption with organic matter fractionation: the role of physical conformation. Organic Geochemistry, 32(5), 709–719.

    Article  CAS  Google Scholar 

  • Schweizer, H. P. (2001). Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiology Letters, 202(1), 1–7.

    Article  CAS  Google Scholar 

  • Singer, H., Müller, S., Tixier, C., & Pillonel, L. (2002). Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environmental Science & Technology, 36(23), 4998–5004.

    Article  CAS  Google Scholar 

  • Spongberg, A. L., Witter, J. D., Acuña, J., Vargas, J., Murillo, M., Umaña, G., et al. (2011). Reconnaissance of selected PPCP compounds in Costa Rican surface waters. Water Research, 45(20), 6709–6717.

    Article  CAS  Google Scholar 

  • Wilson, B., Chen, R. F., Cantwell, M., Gontz, A., Zhu, J., & Olsen, C. R. (2009). The partitioning of Triclosan between aqueous and particulate bound phases in the Hudson River Estuary. Marine Pollution Bulletin, 59(4–7), 207–212.

    Article  CAS  Google Scholar 

  • Wu, C., Spongberg, A. L., & Witter, J. D. (2009). Adsorption and degradation of triclosan and triclocarban in soils and biosolids-amended soils. Journal of Agricultural and Food Chemistry, 57(11), 4900–4905.

    Article  CAS  Google Scholar 

  • Wu, C., Spongberg, A. L., Witter, J. D., Fang, M., & Czajkowski, K. P. (2010). Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environmental Science & Technology, 44(16), 6157–6161.

    Article  CAS  Google Scholar 

  • Ying, G.-G., & Kookana, R. S. (2007). Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environment International, 33(2), 199–205.

    Article  CAS  Google Scholar 

  • Ying, G.-G., Yu, X.-Y., & Kookana, R. S. (2007). Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environmental Pollution, 150(3), 300–305.

    Article  CAS  Google Scholar 

  • Zhao, J.-L., Ying, G.-G., Liu, Y.-S., Chen, F., Yang, J.-F., & Wang, L. (2010). Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: from source to the receiving environment. Journal of Hazardous Materials, 179(1–3), 215–222.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Nature Science Foundation of China (No. 41103064) and the State Key Laboratory of Freshwater Ecology and Biotechnology (No. 2012FB15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenxi Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Wu, C., Xiong, X. et al. Partitioning and Degradation of Triclosan and Formation of Methyl-Triclosan in Water-Sediment Systems. Water Air Soil Pollut 225, 2099 (2014). https://doi.org/10.1007/s11270-014-2099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2099-2

Keywords