Skip to main content

Advertisement

Log in

Rapid Removal of Heavy Metal Cations by Novel Nanocomposite Hydrogels Based on Wheat Bran and Clinoptilolite: Kinetics, Thermodynamics, and Isotherms

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Novel nanocomposite hydrogels based on wheat bran-g-poly(methacrylic acid) and nano-sized clinoptilolite have been successfully utilized for the removal of Pb(II), Cu(II), Cd(II), and Ni(II) cations from their aqueous solution. The experimental results were investigated using Freundlich, Langmuir, Temkin, and Dubinin–Radushkevich isotherm models. The pseudo-first-order, pseudo-second-order and interparticle diffusion kinetic models were studied in order to analyze the kinetic data. The kinetic data indicated that the rate of cation adsorption on nanocomposite hydrogels was fast that more than 80 % of the equilibrium adsorption capacity occurs within 15 min. The maximum monolayer adsorption capacity of the nanocomposite hydrogel, as obtained from the Langmuir adsorption isotherm, was found to be 166.7, 243.9, 175.4, and 166.6 mg g−1 for Pb(II), Cu(II), Cd(II), and Ni(II), respectively. Thermodynamic parameters such as free energy (ΔG 0), enthalpy (ΔH 0), and entropy (ΔS 0) change were determined; the sorption process was found to be endothermic. The results of five times sequential adsorption–desorption cycle showed high adsorption efficiency and a good degree of desorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ai, L., Li, M., & Lif, L. (2011). Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, isotherms, and thermodynamics. Journal of Chemical & Engineering Data, 56(8), 3475–3483.

    Article  CAS  Google Scholar 

  • Akbal, F., & Camc, S. (2011). Copper, chromium and nickel removal from metal plating waste water by electrocoagulation. Desalination, 269(1–3), 214–222.

    Article  CAS  Google Scholar 

  • Al, E., Güçlü, G., İyim, T. B., Emik, S., & Özgümüş, S. (2008). Synthesis and properties of starch-graft-acrylic acid/Na-montmorillonite superabsorbent nanocomposite hydrogels. Journal of Applied Polymer Science, 109(1), 16–22.

    Article  CAS  Google Scholar 

  • Alyüz, B., & Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167(1–3), 482–488.

    Article  Google Scholar 

  • Argun, M. E., Dursun, S., Ozdemir, C., & Karatas, M. (2007). Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. Journal of Hazardous Materials, 141(1), 77–85.

    Article  CAS  Google Scholar 

  • Bannon, D. I., Drexler, J. W., Fent, G. M., Casteel, S. W., Hunter, P. J., Brattin, W. J., & Major, M. A. (2009). Evaluation of small arms range soils for metal contamination and lead bioavailability. Environmental Science & Technology, 43(24), 9071–9076.

    Article  CAS  Google Scholar 

  • Barati, A., Norouzi, H., Sharafoddinzadeh, S., & Davarnejad, R. (2010). Swelling kinetics modeling of cationic methacrylamide-based hydrogels. World Applied Sciences Journal, 11(11), 1336–1341.

    CAS  Google Scholar 

  • Barati, A., Asgari, M., Miri, T., & Eskandari, Z. (2013). Removal and recovery of copper and nickel ions from aqueous solution by poly(methacrylamide-co-acrylic acid)/ montmorillonite nanocomposites. Environmental Science and Pollution Research, 20(9), 6242–6255.

    Article  CAS  Google Scholar 

  • Bhardwaj, D., Sharma, M., Sharma, P., & Tomar, R. (2012). Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer. Journal of Hazardous Materials, 227–228, 292–300.

    Article  Google Scholar 

  • Bortolin, A., Aouada, F. A., Mattoso, L. H. C., & Ribeiro, C. (2013). Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. Journal of Agricultural and Food Chemistry, 61(31), 7431–7439.

    Article  CAS  Google Scholar 

  • Chen, M., Chen, Y., & Diao, G. (2010). Adsorption kinetics and thermodynamics of methylene blue onto p-tert-butyl-calix[4,6,8]arene-bonded silica gel. Journal of Chemical & Engineering Data, 55(11), 5109–5116.

    Article  CAS  Google Scholar 

  • Demirbilek, C., & Özdemir Dinç, C. (2012). Synthesis of diethylaminoethyl dextran hydrogel and its heavy metal ion adsorption characteristics. Carbohydrate Polymers, 90(2), 1159–1167.

    Article  CAS  Google Scholar 

  • Dupont, L., & Guillon, E. (2003). Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environmental Science & Technology, 37(18), 4235–4241.

    Article  CAS  Google Scholar 

  • Futalan, C. M., Kan, C., Dalida, M. L., Hsien, K., Pascua, C., & Wan, M. (2011). Comparative and competitive adsorption of copper, lead and nickel using chitosan immobilized on bentonite. Carbohydrate Polymers, 83(2), 528–536.

    Article  CAS  Google Scholar 

  • Ghaee, A., Shariaty-Niassar, M., Barzin, J., & Zarghan, A. (2012). Adsorption of copper and nickel ions on macroporous chitosan membrane: equilibrium study. Applied Surface Science, 258(19), 7732–7743.

    Article  CAS  Google Scholar 

  • Giannopoulou, I., & Panias, D. (2007). Copper and nickel recovery from acidic polymetallic aqueous solutions. Minerals Engineering, 20(8), 753–760.

    Article  CAS  Google Scholar 

  • Guibal, E., Milot, C., & Tobin, J. M. (1998). Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Industrial & Engineering Chemistry Research, 37(4), 1454–1463.

    Article  Google Scholar 

  • Gupta, V. K., & Rastogi, A. (2009). Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. Journal of Hazardous Materials, 163(1), 396–402.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Mittal, A., Kurup, L., & Mittal, J. (2006a). Adsorption of a hazardous dye, erythrosine, over hen feathers. Journal of Colloid and Interface Science, 304(1), 52–57.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Mittal, A., Kurup, L., & Mittal, J. (2006b). Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. Journal of Colloid and Interface Science, 293(1), 16–26.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Ali, I., & Saini, V. K. (2007a). Defluoridation of wastewaters using waste carbon slurry. Water Research, 41(15), 3307–3316.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, R., Mittal, A., Mathur, M., & Sikarwar, S. (2007b). Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. Journal of Colloid and Interface Science, 309(2), 464–469.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, R., & Varshney, S. (2007c). Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. Journal of Colloid and Interface Science, 312(2), 292–296.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, R., & Varshney, S. (2007d). Removal of Reactofix golden yellow 3 RFN from aqueous solution using wheat husk—an agricultural waste. Journal of Hazardous Materials, 142(1–2), 443–448.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Mittal, A., Malviya, A., & Mittal, J. (2009). Adsorption of carmoisine A from wastewater using waste materials—bottom ash and deoiled soya. Journal of Colloid and Interface Science, 335(1), 24–33.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Rastogi, A., & Nayak, A. (2010). Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. Journal of Colloid and Interface Science, 342(2), 533–539.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Agarwal, S., & Saleh, T. (2011a). Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Research, 45(6), 2207–2212.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Agarwal, S., & Saleh, T. (2011b). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. Journal of Hazardous Materials, 185(1), 17–23.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Gupta, B., Rastogi, A., Agarwal, S., & Nayak, A. (2011c). A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113. Journal of Hazardous Materials, 186(1), 891–901.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Ali, I., Saleh, T., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for waste-water recycling—an overview. RSC Advances, 2(16), 6380–6388.

    Article  CAS  Google Scholar 

  • Ho, Y.-S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681–689.

    Article  CAS  Google Scholar 

  • Hou, H., Zhou, R., Wu, P., & Wu, L. (2012). Removal of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite. Chemical Engineering Journal, 211–212, 336–342.

    Article  Google Scholar 

  • Hua, S., Yang, H., Wang, W., & Wang, A. (2010). Controlled release of ofloxacin from chitosan–montmorillonite hydrogel. Applied Clay Science, 50(1), 112–117.

    Article  CAS  Google Scholar 

  • Huang, T., Xu, H. G., Jiao, K. X., Zhu, L. P., Brown, H. R., & Wang, H. L. (2007). A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Advanced Materials, 19(12), 1622–1626.

    Article  CAS  Google Scholar 

  • Jain, A. K., Gupta, V. K., Bhatnagar, A., & Suhas. (2003). A comparative study of adsorbents prepared from industrial wastes for removal of dyes. Separation Science and Technology, 38(2), 463–481.

    Article  CAS  Google Scholar 

  • Jain, A. K., Gupta, V. K., Jain, S., & Suhas. (2004). Removal of chlorophenols using industrial wastes. Environmental Science & Technology, 38(4), 1195–1200.

    Article  CAS  Google Scholar 

  • Jin, L., & Bai, R. (2002). Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir, 18(25), 9765–9770.

    Article  CAS  Google Scholar 

  • Jovanović, Ž., Krklješ, A., Stojkovska, J., Tomić, S., Obradović, B., Mišković-Stanković, V., & Kačarević-Popović, Z. (2011). Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiation Physics and Chemistry, 80(11), 1208–1215.

    Article  Google Scholar 

  • Kamari, A., & Wan Ngah, W. S. (2009). Isotherm, kinetic and thermodynamic studies of lead and copper uptake by H2SO4 modified chitosan. Colloids and Surfaces B: Biointerfaces, 73(2), 257–266.

    Article  CAS  Google Scholar 

  • Karthikeyan, S., Gupta, V. K., Boopathy, R., Titus, A., & Sekaran, G. (2012). A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. Journal of Molecular Liquids, 173, 153–163.

    Article  CAS  Google Scholar 

  • Kayaalt, Z., Mergen, G., & Söylemezoğlu, T. (2010). Effect of metallothionein core promoter region polymorphism on cadmium, zinc and copper levels in autopsy kidney tissues from a Turkish population. Toxicology and Applied Pharmacology, 245(2), 252–255.

    Article  Google Scholar 

  • Lara, R., Wuilloud, R., Salonia, J., Olsina, R., & Martinez, L. (2001). Determination of Low cadmium concentrations in wine by on-line preconcentration in a knotted reactor coupled to an inductively coupled plasma optical emission spectrometer with ultrasonic nebulization. Fresenius' Journal of Analytical Chemistry, 371(7), 989–993.

    Article  CAS  Google Scholar 

  • Lee, K.-Y., & Kim, K.-W. (2010). Heavy metal removal from shooting range soil by hybrid electrokinetics with bacteria and enhancing agents. Environmental Science & Technology, 44(24), 9482–9487.

    Article  CAS  Google Scholar 

  • Lee, M. H., Lee, S. W., Kim, S. H., Kang, C., & Kim, J. S. (2009). Nanomolar Hg(II) detection using Nile blue chemodosimeter in biological media. Organic Letters, 11(10), 2101–2104.

    Article  CAS  Google Scholar 

  • Li, N., & Bai, R. (2005). A novel amine-shielded surface cross-linking of chitosan hydrogel beads for enhanced metal adsorption performance. Industrial & Engineering Chemistry Research, 44(17), 6692–6700.

    Article  CAS  Google Scholar 

  • Li, P., Kim, N. H., Hui, D., Rhee, K. Y., & Lee, J. H. (2009). Improved mechanical and swelling behavior of the composite hydrogels prepared by ionic monomer and acid-activated laponite. Applied Clay Science, 46(4), 414–417.

    Article  CAS  Google Scholar 

  • Limparyoon, N., Seetapan, N., & Kiatkamjornwong, S. (2011). Acrylamide/2-acrylamido-2-methylpropane sulfonic acid and associated sodium salt superabsorbent copolymer nanocomposites with mica as fire retardants. Polymer Degradation and Stability, 96(6), 1054–1063.

    Article  CAS  Google Scholar 

  • Matz, C. J., & Krone, P. H. (2007). Cell death, stress-responsive transgene activation, and deficits in the olfactory system of larval zebrafish following cadmium exposure. Environmental Science & Technology, 41(14), 5143–5148.

    Article  CAS  Google Scholar 

  • Max Roundhill, D. (2004). Novel strategies for the removal of toxic metals from soils and waters. Journal of Chemical Education, 81(2), 275–283.

    Article  Google Scholar 

  • Mittal, A., Kurup, L., & Gupta, V. K. (2005). Use of waste materials—bottom ash and de-oiled soya, as potential adsorbents for the removal of Amaranth from aqueous solutions. Journal of Hazardous Materials, 117(1), 171–178.

    Article  CAS  Google Scholar 

  • Mittal, A., Gupta, V. K., Malviya, A., & Mittal, J. (2008). Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (bottom ash and de-oiled soya). Journal of Hazardous Materials, 151(2–3), 821–832.

    Article  CAS  Google Scholar 

  • Mittal, A., Mittal, J., Malviya, A., & Gupta, V. K. (2010a). Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. Journal of Colloid and Interface Science, 344(2), 497–507.

    Article  CAS  Google Scholar 

  • Mittal, A., Mittal, J., Malviya, A., Kaur, D., & Gupta, V. K. (2010b). Adsorption of hazardous dye crystal violet from wastewater by waste materials. Journal of Colloid and Interface Science, 343(2), 463–473.

    Article  CAS  Google Scholar 

  • Molinari, R., Poerio, T., & Argurio, P. (2008). Selective separation of copper (II) and nickel (II) from aqueous media using the complexation–ultrafiltration process. Chemosphere, 70(3), 341–348.

    Article  CAS  Google Scholar 

  • Nguyen, C., & Do, D. D. (2001). The Dubinin-Radushkevich equation and the underlying microscopic adsorption description. Carbon, 39, 1327–1336.

    Article  CAS  Google Scholar 

  • Nüket Tirtom, V., Dinçer, A., Becerik, S., Aydemir, T., & Çelik, A. (2012). Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chemical Engineering Journal, 197, 379–386.

    Article  Google Scholar 

  • Pośpiech, B., & Walkowiak, W. (2007). Separation of copper(II), cobalt(II) and nickel(II) from chloride solutions by polymer inclusion membranes. Separation and Purification Technology, 57(3), 461–465.

    Article  Google Scholar 

  • Pourbeyram, S., & Mohammadi, S. (2014). Synthesis and characterization of highly stable and water dispersible hydrogel–copper nanocomposite. Journal of Non-Crystalline Solids, 402, 58–63.

    Article  CAS  Google Scholar 

  • Pourjavadi, A., Ayyari, M., & Amini-Fazl, M. S. (2008). Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. European Polymer Journal, 44(4), 1209–1216.

    Article  CAS  Google Scholar 

  • Qdais, H. A., & Moussa, H. (2004). Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination, 164(2), 105–110.

    Article  CAS  Google Scholar 

  • Ramachandra Reddy, B., & Neela Priya, D. (2005). Process development for the separation of copper(II), nickel(II) and zinc(II) from sulphate solutions by solvent extraction using LIX 84 I. Separation and Purification Technology, 45(2), 163–167.

    Article  Google Scholar 

  • Rashidzadeh, A., Olad, A., Salari, D., & Reyhanitabar, A. (2014). On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly (acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. Journal of Polymer Research, 21, 344–351.

    Article  Google Scholar 

  • Reis, A. V., Guilherme, M. R., Moia, T. A., Mattoso, L. H. C., Muniz, E. C., & Tambourgi, E. B. (2008). Synthesis and characterization of a starch-modified hydrogel as potential carrier for drug delivery system. Journal of Polymer Science Part A: Polymer Chemistry, 46(7), 2567–2574.

    Article  CAS  Google Scholar 

  • Salam, A., Pawlak, J. J., Venditti, R. A., & El-tahlawy, K. (2010). Synthesis and characterization of starch citrate−chitosan foam with superior water and saline absorbance properties. Biomacromolecules, 11(6), 1453–1459.

    Article  CAS  Google Scholar 

  • Saleh, T., & Gupta, V. K. (2012). Column with CNT/magnesium oxide composite for lead (II) removal from water. Environmental Science and Pollution Research, 19(4), 1224–1228.

    Article  CAS  Google Scholar 

  • Shirsath, S. R., Hage, A. P., Zhou, M., Sonawane, S. H., & Ashokkumar, M. (2011). Ultrasound assisted preparation of nanoclay bentonite-FeCo nanocomposite hybrid hydrogel: a potential responsive sorbent for removal of organic pollutant from water. Desalination, 281, 429–437.

    Article  CAS  Google Scholar 

  • Tavakoli, O., & Yoshida, H. (2005). Effective recovery of harmful metal ions from squid wastes using subcritical and supercritical water treatments. Environmental Science & Technology, 39(7), 2357–2363.

    Article  CAS  Google Scholar 

  • Uğuzdoğan, E., Baki Denkbaş, E., & Sermet Kabasakal, O. (2010). The use of polyethyleneglycolmethacrylate-co-vinylimidazole (PEGMA-co-VI) microspheres for the removal of nickel(II) and chromium(VI) Ions. Journal of Hazardous Materials, 177(1–3), 119–125.

    Google Scholar 

  • Wang, L., Zhang, J., & Wang, A. (2008). Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/ montmorillonite superadsorbent nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 322(1–3), 47–53.

    Article  CAS  Google Scholar 

  • Wang, X., Zheng, Y., & Wang, A. (2009). Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. Journal of Hazardous Materials, 168(2–3), 970–977.

    Article  CAS  Google Scholar 

  • Wu, N., Wei, H., & Zhang, L. (2012). Efficient removal of heavy metal ions with biopolymer template synthesized mesoporous titania beads of hundreds of micrometers size. Environmental Science & Technology, 46(1), 419–425.

    Article  CAS  Google Scholar 

  • Xu, K., Tan, Y., Chen, Q., An, H., Li, W., Dong, L., & Wang, P. (2010). A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate. Journal of Colloid and Interface Science, 345(2), 360–368.

    Article  CAS  Google Scholar 

  • Xu, Z., Ren, T., Xiao, C., Li, H., & Wu, T. (2011). Nickel promotes the invasive potential of human lung cancer cells via TLR4/MyD88 signaling. Toxicology, 285(1–2), 25–30.

    Article  CAS  Google Scholar 

  • Yan, H., Yang, L., Yang, Z., Yang, H., Li, A., & Cheng, R. (2012). Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions. Journal of Hazardous Materials, 229–230, 371–380.

    Article  Google Scholar 

  • Yoshizaki, S., & Tomida, T. (2000). Principle and process of heavy metal removal from sewage sludge. Environmental Science & Technology, 34(8), 1572–1575.

    Article  CAS  Google Scholar 

  • Zendehdel, M., Barati, A., & Alikhani, H. (2011). Removal of heavy metals from aqueous solution by poly(acrylamide-co-acrylic acid) modified with porous materials. Polymer Bulletin, 67(2), 343–360.

    Article  CAS  Google Scholar 

  • Zhang, C., Zhang, H., Wang, L., Zhang, J., & Yao, H. (2007a). Purification of antifreeze protein from wheat bran (Triticum aestivum L.) based on its hydrophilicity and ice-binding capacity. Journal of Agricultural and Food Chemistry, 55(19), 7654–7658.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, Q., & Wang, A. (2007b). Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohydrate Polymers, 68(2), 367–374.

    Article  CAS  Google Scholar 

  • Zhang, D., Wang, D., Duan, J., & Ge, S. (2009). Research on the long time swelling properties of poly (vinyl alcohol)/hydroxyapatite composite hydrogel. Journal of Bionic Engineering, 6(1), 22–28.

    Article  CAS  Google Scholar 

  • Zhao, X., Jia, Q., Song, N., Zhou, W., & Li, Y. (2010). Adsorption of Pb(II) from an aqueous solution by titanium dioxide/carbon nanotube nanocomposites: kinetics, thermodynamics, and isotherms. Journal of Chemical & Engineering Data, 55(10), 4428–4433.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Arak University research fund for providing financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aboulfazl Barati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barati, A., Moghadam, E.A., Miri, T. et al. Rapid Removal of Heavy Metal Cations by Novel Nanocomposite Hydrogels Based on Wheat Bran and Clinoptilolite: Kinetics, Thermodynamics, and Isotherms. Water Air Soil Pollut 225, 2096 (2014). https://doi.org/10.1007/s11270-014-2096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2096-5

Keywords