Water, Air, & Soil Pollution

, 225:2078

Complex Ecological Responses to Drought and Fire-Retardant Contamination Impacts in Ephemeral Waters

  • Silvia Martín
  • Marta Rodríguez
  • José M. Moreno
  • David G. Angeler
Article

Abstract

The frequency and duration of droughts are predicted to increase with global warming, increasing the risk of wildland fires. This motivates research into how drought interacts with management practices to control fires, especially in non-target ecosystems. Fire-retardant chemicals help prevent or control fires, but adversely affect the natural (pristine) ecological status in aquatic ecosystems. Using a multiple before-after control-impact design, and univariate and multivariate statistics, this study assesses population- and community-level responses of zooplankton to the single and compounded effects of drought and contamination in experimental field mesocosms. The contamination treatment simulated real scenarios of dosage-dependent fire-retardant pollution. Drought and contamination interacted in ways that caused complex synergistic or antagonistic responses in zooplankton. Response patterns differed between population-level and community-level assessments. Also, zooplankton population responses to drought and contamination impacts were context specific. This study provides an example of a management dilemma for areas affected by droughts. Not only will drought increase the risk of wildland fires but also complicate the prediction of ecological impact in aquatic environments when using retardant chemicals as a fire control and mitigation option. Management trade-offs are needed to minimize the uncertainties related to ecological damage from wildland fires and protect valuable but scarce water resources.

Keywords

In situ experiment Fire management Multiple stressors Stability/resilience Water resource management Temporary wetlands 

Supplementary material

11270_2014_2078_MOESM1_ESM.xls (40 kb)
ESM 1(XLS 39 kb)

References

  1. Adams, S. M., & Greeley, M. S. (2000). Ecotoxicological indicators of water quality: using multi-response indicators to assess the health of aquatic ecosystems. Water, Air, and Soil Pollution, 123, 103–115.CrossRefGoogle Scholar
  2. Angeler, D. G. (2009). Species-specific and context-dependent disruption of population fluctuations resulting from hypereutrophication events. Environmental Pollution, 157, 3174–3182.CrossRefGoogle Scholar
  3. Angeler, D. G., & Moreno, J. M. (2006). Impact-recovery patterns of water quality in temporary wetlands after fire retardant pollution. Canadian Journal of Fisheries and Aquatic Sciences, 63, 1617–1626.CrossRefGoogle Scholar
  4. Angeler, D. G., & Moreno, J. M. (2007). Zooplankton community resilience after press-type anthropogenic stress in temporary ponds. Ecological Applications, 17, 1105–1115.CrossRefGoogle Scholar
  5. Angeler, D. G., Rodríguez, M., Martín, S., & Moreno, J. M. (2004). Assessment of application rate dependent impacts of a long-term fire retardant chemical (Fire-Trol 934®) on Typha domingensis germination. Environment International, 30, 375–381.CrossRefGoogle Scholar
  6. Angeler, D. G., Martín, S., & Moreno, J. M. (2005). Daphnia emergence: a sensitive indicator of fire retardant stress in temporary wetlands. Environment International, 31, 615–620.CrossRefGoogle Scholar
  7. Angeler, D. G., Sánchez, B., García, G., & Moreno, J. M. (2006). Community ecotoxicology: invertebrate emergence from Fire-Trol 934 contaminated vernal pool and salt marsh sediments under contrasting photoperiod and temperature regimes. Aquatic Toxicology, 78, 167–175.CrossRefGoogle Scholar
  8. Arnott, S. E., & Yan, N. D. (2002). The influence of drought and reacidification on zooplankton emergence from resting stages. Ecological Applications, 12, 138–153.CrossRefGoogle Scholar
  9. Blake, D., Lu, K., Horowitz, P., & Boyce, M. C. (2013). Fire suppression and burnt sediments: effects on the water chemistry of fire-affected wetlands. International Journal of Wildland Fire, 21, 557–561.CrossRefGoogle Scholar
  10. Boix, D., Sala, J., & Moreno-Amich, R. (2001). The faunal composition of Espolla pond (NE Iberian Peninsula): the neglected biodiversity of temporary waters. Wetlands, 21, 577–592.CrossRefGoogle Scholar
  11. Boix, D., Gascón, S., Sala, J., Martinoy, M., Gifre, J., & Quintana, X. D. (2005). A new index of water quality assessment in Mediterranean wetlands based on crustacean and insect assemblages: the case of Catalunya (NE Iberian peninsula). Aquatic Conservation: Marine and Freshwater Ecosystems, 15, 635–651.CrossRefGoogle Scholar
  12. Bond, N. R., Lake, P. S., & Arthington, A. H. (2008). The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia, 600, 3–16.CrossRefGoogle Scholar
  13. Brockwell, P., & Davis, R. (2002). Introduction to time series and forecasting. Springer.Google Scholar
  14. Clarke, K. R. (1993). Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology, 18, 117–143.Google Scholar
  15. Davies, G. M., Gray, A., Rein, G., & Legg, C. J. (2013). Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. Forest Ecology and Management, 308, 169–177.CrossRefGoogle Scholar
  16. De Meester, L., Declerck, S., Stoks, R., Louette, G., Van De Meutter, F., De Bie, T., Michels, E., & Brendonck, L. (2005). Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystystems, 15, 715–725.CrossRefGoogle Scholar
  17. Dietrich, J. P., Myers, M. S., Strickland, S. A., Van Gaest, A., & Arkoosh, M. R. (2013). Toxicity of forest fire retardant chemicals to stream-type chinook salmon undergoing parr–smolt transformation. Environmental Toxicology and Chemistry, 32, 236–247.CrossRefGoogle Scholar
  18. Downes, B. J., Barmutta, L. A., Fairweather, P. G., Faith, D. P., Keough, M. J., Lake, P. S., Mapstone, B. D., & Quinn, G. P. (2002). Monitoring ecological impacts: concepts and practice in flowing waters. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. Fischer, J. M., Klug, J. L., Ives, A. R., et al. (2001). Ecological history affects zooplankton community responses to acidification. Ecology, 82, 2984–3000.CrossRefGoogle Scholar
  20. Folt, C. L., Chen, C. Y., Moore, M. V., & Burnaford, J. (1999). Synergisms and antagonisms among multiple stressors. Limnology and Oceanography, 44, 864–877.CrossRefGoogle Scholar
  21. Frost, T. M., Montz, P. K., Kratz, T. K., Badillo, T., et al. (1999). Multiple stresses from a single agent: diverse responses to the experimental acidification of Little Rock Lake, Wisconsin. Limnology and Oceanography, 44, 789–794.CrossRefGoogle Scholar
  22. Giménez, A., Pastor, E., Zarate, E., Planas, E., & Arnaldos, J. (2004). Long-term forest fire retardants: a review of quality, effectiveness, application and environmental considerations. International Journal of Wildland Fire, 13, 1–15.CrossRefGoogle Scholar
  23. Hillebrand, H., Bennett, D. M., & Cadotte, M. W. (2008). Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology, 89, 1510–1520.CrossRefGoogle Scholar
  24. Holm, S. (1979). A simple sequentially rejective test procedure. Scandinavian Journal of Statistics, 6, 65–70.Google Scholar
  25. Humphries, P., & Baldwin, D. S. (2003). Drought and aquatic ecosystems: an introduction. Freshwater Biology, 48, 1141–1146.CrossRefGoogle Scholar
  26. Kane, D. D., Gordon, S. I., Munawar, M., Charlton, M. N., & Culver, D. A. (2009). The planktonic index of biotic integrity (P-IBI): an approach for assessing lake ecosystem health. Ecological Indicators, 9, 1234–1247.CrossRefGoogle Scholar
  27. Keller, W. (2009). Limnology in northeastern Ontario: from acidification to multiple stressors. Canadian Journal of Fisheries and Aquatic Sciences, 66, 1189–1198.CrossRefGoogle Scholar
  28. Kneitel, J. M., & Chase, J. M. (2004). Trade-offs in community ecology: linking spatial scales and species co-existence. Ecology Letters, 7, 69–80.CrossRefGoogle Scholar
  29. Lahr, J. (1997). Ecotoxicology of organisms adapted to life in temporary freshwater ponds in arid and semi-arid regions. Archives of Environmental Contamination and Toxicology, 32, 50–57.CrossRefGoogle Scholar
  30. Lake, P. S. (2000). Disturbance, patchiness and diversity in streams. Journal of the North American Benthological Society, 19, 573–592.CrossRefGoogle Scholar
  31. Mitsch, W. J., & Gosselink, J. G. (2000). Wetlands (3rd ed.). New York: Wiley.Google Scholar
  32. Moreno, L., Jiménez, M. E., Aguilera, H., Jiménez, P., & de la Losa, A. (2011). The 2009 smouldering peat fire in Las Tablas de Daimiel National Park (Spain). Fire Technology, 47, 519–538.CrossRefGoogle Scholar
  33. Orlowsky, B., & Seneviratne, S. I. (2012). Global changes in extreme events: regional and seasonal dimension. Climatic Change, 110, 669–696.CrossRefGoogle Scholar
  34. Pereira, M. G., Trigo, R. M., da Camara, C. C., Pereira, J. M. C., & Leite, S. M. (2005). Synoptic patterns associated with large summer forest fires in Portugal. Agricultural and Forest Meteorology, 129, 11–25.CrossRefGoogle Scholar
  35. San Miguel-Ayanz, J., Moreno, J. M., & Camia, A. (2013). Analysis of large fires in European Mediterranean landscapes: lessons learned and perspectives. Forest Ecology and Management, 294, 11–22.CrossRefGoogle Scholar
  36. Sánchez-Carrillo, S., & Alvarez-Cobelas, M. (2001). Nutrient dynamics and eutrophication patterns in a semiarid wetland: the effects of fluctuating hydrology. Water, Air, and Soil Pollution, 131, 97–118.CrossRefGoogle Scholar
  37. Sánchez-Carrillo, S., & Angeler, D.G. (Eds.) (2010). Ecology of threatened semiarid wetlands: Long-term research in Las Tablas de Daimiel. Wetlands: ecology, management and conservation. Series Ed. Max Findlayson. Springer.Google Scholar
  38. Seneviratne, S. I., Nicholls, N., Easterling, D. C., Goodess, M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., & Zhang, X. (2012). Changes in climate extremes and their impacts on the natural physical environment. In C. B. Field, V. Barros, T. F. Stocker, et al. (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change (IPCC SREX Report) (pp. 109–230). Cambridge (UK), New York (USA), Cambridge University Press.Google Scholar
  39. Sládeček, V. (1983). Rotifers as indicators of water quality. Hydrobiologia, 100, 169–201.CrossRefGoogle Scholar
  40. Swanson, S.M. (2004). Multiple stressors: Literature review and gap analysis. Water environment research foundation report (Project 00-ECO-2B). London, International Water Association Publishing.Google Scholar
  41. Townsend, C. R., Uhlmann, S. S., & Matthaei, C. D. (2008). Individual and combined responses of stream ecosystems to multiple stressors. Journal of Applied Ecology, 45, 1810–1819.CrossRefGoogle Scholar
  42. Verdú, F., Salas, J., & Vega-García, C. (2012). A multivariate analysis of biophysical factors and forest fires in Spain, 1991–2005. International Journal of Wildland Fire, 21, 498–509.CrossRefGoogle Scholar
  43. Vinebrooke, R. D., Cottingham, K. L., Norberg, J., Scheffer, M., Dodosn, S. I., Maberly, S. C., & Sommer, U. (2004). Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos, 104, 451–457.CrossRefGoogle Scholar
  44. Whitman, R. L., Nevers, M. B., Goodrich, M. L., Murphy, P. C., & Davis, B. M. (2004). Characterization of Lake Michigan coastal lakes using zooplankton assemblages. Ecological Indicators, 4, 277–286.CrossRefGoogle Scholar
  45. Williams, D. D. (2006). The biology of temporary waters. Oxford: Oxford University Press.Google Scholar
  46. Zacharias, L., & Zamparas, M. (2010). Mediterranean temporary ponds. A disappearing ecosystem. Biodiversity and Conservation, 19, 3827–3834.CrossRefGoogle Scholar
  47. Zedler, J. B., & Kercher, S. (2005). Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30, 39–74.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Silvia Martín
    • 1
  • Marta Rodríguez
    • 1
  • José M. Moreno
    • 1
  • David G. Angeler
    • 2
  1. 1.Institute of Environmental SciencesUniversity of Castilla-La ManchaToledoSpain
  2. 2.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations