Water, Air, & Soil Pollution

, 225:2063 | Cite as

Prediction of the Level of Air Pollution Using Principal Component Analysis and Artificial Neural Network Techniques: a Case Study in Malaysia

  • Azman Azid
  • Hafizan JuahirEmail author
  • Mohd Ekhwan Toriman
  • Mohd Khairul Amri Kamarudin
  • Ahmad Shakir Mohd Saudi
  • Che Noraini Che Hasnam
  • Nor Azlina Abdul Aziz
  • Fazureen Azaman
  • Mohd Talib Latif
  • Syahrir Farihan Mohamed Zainuddin
  • Mohamad Romizan Osman
  • Mohammad Yamin


This study focused on the pattern recognition of Malaysian air quality based on the data obtained from the Malaysian Department of Environment (DOE). Eight air quality parameters in ten monitoring stations in Malaysia for 7 years (2005–2011) were gathered. Principal component analysis (PCA) in the environmetric approach was used to identify the sources of pollution in the study locations. The combination of PCA and artificial neural networks (ANN) was developed to determine its predictive ability for the air pollutant index (API). The PCA has identified that CH4, NmHC, THC, O3, and PM10 are the most significant parameters. The PCA-ANN showed better predictive ability in the determination of API with fewer variables, with R 2 and root mean square error (RMSE) values of 0.618 and 10.017, respectively. The work has demonstrated the importance of historical data in sampling plan strategies to achieve desired research objectives, as well as to highlight the possibility of determining the optimum number of sampling parameters, which in turn will reduce costs and time of sampling.


Environmetric Pattern recognition Principal component analysis Artificial neural network 



The authors acknowledge the Air Quality Division of the Department of Environment (DOE) under the Ministry of Natural Resource and Environment, Malaysia, for giving us permission to utilize air quality data, advice, guidance, and support for this study.


  1. Abdul-Wahab, S. A., & Al-Alawi, S. M. (2002). Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environmental Modelling and Software, 17, 219–228.CrossRefGoogle Scholar
  2. Abdul-Wahab, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling and Software, 20, 1263–1271.CrossRefGoogle Scholar
  3. Afroz, R., Hassan, M. N., & Ibrahim, N. A. (2003). Review of air pollution and health impacts in Malaysia. Environmental Research, 92, 71–77. doi: 10.1016/S0013-9351(02)00059-2.CrossRefGoogle Scholar
  4. Afzali, M., Afzali, A., & Zahedi, G. (2012). The potential of artificial neural network technique in daily and monthly ambient air temperature prediction. International Journal of Environmental Science Development, 3(1), 33–38.Google Scholar
  5. Alam Sekitar Malaysia Sdn Bhd (ASMA). (2007). Standard operating procedure for continuous air quality monitoring. Selangor Malaysia: Shah Alam.Google Scholar
  6. Alkasassbeh, M., Sheta, A. F., Faris, H., & Turabieh, H. (2013). Prediction of PM10 and TSP air pollution parameters using artificial neural network autoregressive, external input models: a case study in salt, Jordan. Middle East Journal of Scientific Research, 14(7), 999–1009. doi: 10.5829/idosi.mejsr.2013.14.7.2171.Google Scholar
  7. Arsene, C., Olariu, R. I., & Mihalopoulos, N. (2007). Chemical composition of rainwater in the Northeastern Romania, Iasi Region (2003–2006). Atmospheric Environment, 41, 9452–9467.CrossRefGoogle Scholar
  8. Awang, M. B., Jaafar, A. B., Abdullah, A. M., Ismail, M. B., Hassan, M. N., Abdullah, R., Johan, S., & Noor, H. (2000). Air quality in Malaysia: impacts, management issue and future challenges. Respirology, 5, 183–196.CrossRefGoogle Scholar
  9. Azid, A., Juahir, H., Latif, M. T., Zain, S. M., & Osman, M. R. (2013). Feed-forward artificial neural network model for air pollutant index prediction in the southern region of Peninsular Malaysia. Journal of Environmental Protection, 4(12A), 1–10. doi: 10.4236/jep.2013.412A001.CrossRefGoogle Scholar
  10. Azmi, S. Z., Latif, M. T., Ismail, A. S., Juneng, L., & Jemain, A. A. (2010). Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia. Air Quality, Atmosphere and Health, 3, 53–64. doi: 10.1007/s11869-009-0051-1.CrossRefGoogle Scholar
  11. Banan, N., Latif, M. T., Juneng, L., & Ahamad, F. (2013). Characteristics of surface ozone concentrations at stations with different backgrounds in the Malaysian Peninsula. Aerosol and Air Quality Research, 13, 1090–1106. doi: 10.4209/aaqr.2012.09.0259.Google Scholar
  12. Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology, 3, 77–85.Google Scholar
  13. Bishoi, B., Prakash, A., & Jain, V. K. (2009). A comparative study of air quality index based on factor analysis and US EPA methods for an urban environment. Aerosol & Air Quality Research, 9, 1–17.Google Scholar
  14. Brauer, M., & Jamal, H. H. (1998). Fires in Indonesia: crisis and reaction. Environmental Science and Technology, 32(17), 404A–407A.CrossRefGoogle Scholar
  15. Brunelli, U., Piazza, U., & Pignato, L. (2007). Two-day ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy. Atmospheric Environment, 41(14), 2967–2995. doi: 10.1016/j.atmosenv.2006.12.013.CrossRefGoogle Scholar
  16. Bucinski, A., Baczek, T., Wasniewski, T., & Stefanowicz, M. (2005). Clinical data analysis with the use of artificial neural networks (ANN) and principal component analysis (PCA) of patients with endometrial carcinoma. Reports on Practical Oncology & Radiotherapy, 10, 239–248.Google Scholar
  17. Chaloulakou, A., Grivas, G., & Spyrellis, N. (2003). Neural network and multiple regression model for PM10 prediction in Athens: a comparative assessment. Journal Air & Waste Management Association, 53, 1183–1190. doi: 10.1080/10473289.2003.10466276.CrossRefGoogle Scholar
  18. Cigizoglu, H. K., & Kisi, O. (2006). Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology, 317(3), 221–238.CrossRefGoogle Scholar
  19. Department of Environment (DOE) (2014). Main sources of air pollution in Malaysia. Accessed 20 March 2014
  20. Department of Environment Malaysia (DOE). (2005). Malaysia environmental quality report, 2004. Kuala Lumpur: Ministry of Science, Technology and Environment.Google Scholar
  21. Department of Environment Malaysia (DOE). (2010). Malaysia environmental quality report, 2009. Kuala Lumpur: Ministry of Science, Technology and Environment.Google Scholar
  22. Dominick, D., Juahir, H., Latif, M. T., Zain, S. M., & Aris, A. Z. (2012). Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmospheric Environment, 60, 172–181. doi: 10.1016/j.atmosenv.2012.06.021.CrossRefGoogle Scholar
  23. Dragomir, E. G. (2010). Air quality index prediction using K-nearest neighbor technique. Bulletin of PG University of Ploiesti, Series Mathematics, Informatics, Physics, LXII(1/2010), 103–108.Google Scholar
  24. Field, A. P. (2000). Discovering statistics using SPSS for Windows. London-Thous and Oaks-New Delhi: Sage Publication.Google Scholar
  25. Field, A. P. (2005). Discovering statistics using SPSS (2nd ed.). London: Sage.Google Scholar
  26. García, I., Rodríquez, J. G., & Tenorio, Y. M. (2011). Artificial neural network models for prediction of ozone concentrations in Guadalajara, Mexico. Air quality-models and application. Nicolas Mazzeo (Ed.), ISBN:978 953-307-307-1, (pp. 35-52).Google Scholar
  27. Giorgio, F., & Piero, M. (1996). Mathematical models for planning and controlling air quality. Proceedings of IIASA Workshop, 17.Google Scholar
  28. Haiduc, I., & Beldean-Gale, M. S. (2011). Variation of greenhouse gases in urban areas-case study: CO2, CO and CH4 in three Romanian cities, air quality-models and applications. Prof. Dragana Popovic (Ed.), ISBN: 978953-307-307-1, InTech. areas-case-study-co2-co-and-ch4-in three-romanian-cities. Accessed 2 May 2013.
  29. Hakimpoor, H., Arshad, K. A., Tat, H. H., Khani, N., & Rahmandoust, M. (2011). Artificial neural networks’ application in management. World Applied Sciences Journal, 14(7), 1008–1019.Google Scholar
  30. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feed-forward networks are universal approximators. Neural Networks, 2, 359–366.CrossRefGoogle Scholar
  31. Jain, A. K., Mao, J., & Mohiuddin, K. M. (1996). Artificial neural networks: a tutorial. Computer, 29(3), 31–44.CrossRefGoogle Scholar
  32. Jamal, H. H., Pillay, M. S., Zailina, H., Shamsul, B. S., Sinha, K., Huri, Z. Z., Khew, S. L., Mazrura, S., Ambu, S., Rahimah, A., & Ruzita, M. S. (2004). A study of health impact & risk assessment of urban air pollution in Klang Valley. Malaysia, Kuala Lumpur: UKM Pakarunding Sdn Bhd.Google Scholar
  33. Juneng, L., Latif, M. T., Tangang, F. T., & Mansor, H. (2009). Spatio–temporal characteristics of PM10 concentration across Malaysia. Atmospheric Environment, 45, 4370–4378.CrossRefGoogle Scholar
  34. Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., & Kolehmainen, M. (2004). Methods for imputation of missing values in air quality data set. Atmospheric Environment, 38, 2895–2907. doi: 10.1016/j.atmosenv.2004.02.026.CrossRefGoogle Scholar
  35. Kaiser, H. F. (1958). The varimax criterion for analytical rotation in factor analysis. Psychometrika, 23(3), 187–200. doi: 10.1007/BF02289233.CrossRefGoogle Scholar
  36. Kamal, M. M., Jailani, R., & Shauri, R. L. A. (2006). Prediction of ambient air quality based on neural network technique. 4th Student Conference on Research and Development, 115-119, doi: 10.1109/SCORED.2006.4339321.
  37. Kim, J. O., & Mueller, C. W. (1987). Introduction to factor analysis: what it is and how to do it. Quantitative applications in the social science series. Newbury Park: Sage University Press.Google Scholar
  38. Koppmann, R. (2007). Volatile organic compounds in the atmosphere. Singapore: Blackwell Publishing Ltd.CrossRefGoogle Scholar
  39. Kurt, A., Gulbagci, B., Karaca, F., & Alagha, O. (2008). An online air pollution forecasting system using neural networks. Environment International, 34(5), 592–598. doi: 10.1016/j.envint.2007.12.020.CrossRefGoogle Scholar
  40. Latif, M. T., Hey, L. S., & Juneng, L. (2012). Variations of surface ozone concentration across the Klang Valley, Malaysia. Atmospheric Environment, 61, 434–445. doi: 10.1016/j.atmosenv.2012.07.062.CrossRefGoogle Scholar
  41. Lau, J., Hung, W. T., & Cheung, C. S. (2009). Interpretation of air quality in relation to monitoring station’s surroundings. Atmospheric Environment, 43, 769–777.CrossRefGoogle Scholar
  42. Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313, 77–89. doi: 10.1016/S0048 9697(02)00683-6.CrossRefGoogle Scholar
  43. Liu, G., Yi, Z., & Yang, S. (2007). A hierarchical intrusion detection model based on the PCA neural networks. Neurocomputing, 70, 1561–1568.CrossRefGoogle Scholar
  44. Mahboubeh, A., Afsaneh, A., & Gholamreza, Z. (2012). The potential of artificial neural network technique in daily and monthly ambient air temperature prediction. International Journal of Environmental Science and Development, 3(1), 33–38.Google Scholar
  45. Mahiyudin, W. R. W., Sahani, M., Aripin, R., Latif, M. T., Thach, T. Q., & Wong, C. M. (2013). Short-term effects of daily air pollution on mortality. Atmospheric Environment, 65, 69–79. doi: 10.1016/j.atmosenv.2012.10.019.CrossRefGoogle Scholar
  46. Maier, H. R., & Dandy, G. C. (2001). Neural network based modelling of environmental variables: a systematic approach. Mathematical and Computer Modelling, 33, 669–682.CrossRefGoogle Scholar
  47. Mazrura, S., Wan Mahiyuddin, W. R., Aripin, R., Mohd Latif, T., Thach, T. Q., & Wong, C.-M. (2011). Health risk of air pollution on mortality in Klang Valley, Malaysia. Epidemiology, 22(1), 159.CrossRefGoogle Scholar
  48. McNeil, V. H., Cox, M. E., & Preda, M. (2005). Assessment of chemical water types and their spatial variation using multi-stage cluster analysis, Queensland, Australia. Journal of Hydrology, 310(1–4), 181–200.CrossRefGoogle Scholar
  49. Monteiro, A., Strunk, A., Carvalho, A., Tchepel, O., Miranda, A. I., Borrego, C., Saavedra, S., Rodríguez, A., Souto, J., Casares, J., Friese, E., & Elbern, H. (2012). Investigating a high ozone episode in a rural mountain site. Environmental Pollution, 162, 176–189.CrossRefGoogle Scholar
  50. Moustris, K. P., Ziomas, I. C., & Paliatsos, A. G. (2010). 3-day-ahead forecasting of regional pollution index for the pollutants NO2, CO, SO2, and O3 using artificial neural networks in Athens, Greece. Water, Air, & Soil Pollution, 209(1), 29–43. doi: 10.1007/s11270-009-0179-5.CrossRefGoogle Scholar
  51. Mutalib, S. N. S. A., Juahir, H., Azid, A., Sharif, S. M., Latif, M. T., Aris, A. Z., Zain, S. M., & Dominick, D. (2013). Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia. Environmental Science, Processes & Impacts 1-12, doi:  10.1039/c3em00161j.
  52. Niska, H., Hiltunen, T., Karppinen, A., Ruu Skanen, J., & Koleh Mainen, T. (2004). Evolving the neural network model for forecasting air pollution time series. Engineering Applications of Artificial Intelligence, 17, 159.CrossRefGoogle Scholar
  53. Niska, H., Rantamaki, M., Hiltunen, T., Karppinen, A., Hukko Nen, J., Ruu Skanen, J., & Koleh-Mainen, M. (2005). Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HURLEM for the forecasting of urban airborne pollutant concentrations. Atmospheric Environment, 39, 6524.CrossRefGoogle Scholar
  54. Norusis, M. J. (1990). SPSS base system user’s guide. Chicago, IL, USA: SPSS.Google Scholar
  55. O’Farrella, M., Lewisa, E., Flanagana, C., Lyonsa, W. B., & Jackman, N. (2005). Combining principal component analysis with an artificial neural network to perform online quality assessment of food as it cooks in a large scale industrial oven. Sensors and Actuators B, 107, 104–112.CrossRefGoogle Scholar
  56. Othman, N., Mat Jafri, M. Z., & San, L. H. (2010). Estimating particulate matter concentration over arid region using satellite remote sensing: a case study in Makkah, Saudi Arabia. Modern Applied Science, 4(11), 131–142.CrossRefGoogle Scholar
  57. Pandey, S., Tripathi, B., & Mishra, V. (2008). Dust deposition in a sub-tropical opencast coalmine area, India. Journal of Environmental Management, 86, 132–138.CrossRefGoogle Scholar
  58. Perez, P., & Reyes, J. (2006). An integrated neural network model for PM10 forecasting. Atmospheric Environment, 40, 2845–2851. doi: 10.1016/j.atmosenv.2006.01.010.CrossRefGoogle Scholar
  59. Pires, J. C. M., Sousa, S. I. V., Pereira, M. C., Alvim-Ferraz, M. C. M., & Martins, F. G. (2008a). Management of air quality monitoring using principal component and cluster. Analysis—part I: SO2 and PM10. Atmospheric Environment, 42, 1249–1260.CrossRefGoogle Scholar
  60. Pires, J. C. M., Sousa, S. I. V., Pereira, M. C., Alvim-Ferraz, M. C. M., & Martins, F. G. (2008b). Management of air quality monitoring using principal component and cluster. Analysis—part II: CO, NO2 and O3. Atmospheric Environment, 42, 1261–1274.CrossRefGoogle Scholar
  61. Pires, J. C. M., Sousa, S. I. V., Pereira, M. C., Alvim-Ferraz, M. C. M., & Martins, F. G. (2009). Identification of redundant air quality measurements through the use of principal component analysis. Atmospheric Environment, 43, 3837–3842.CrossRefGoogle Scholar
  62. Rahman, N. H. A., Lee, M. H., Latif, M. T., & Suhartono. (2013). Forecasting of air pollution index with artificial neural network. Jurnal Teknologi, 63(2), 59–64.Google Scholar
  63. Ravi, V., & Pramodh, C. (2008). Threshold accepting trained principal component neural network and feature subset selection: application to bankruptcy prediction in banks. Applied Soft Computing, 8, 1539–1548.CrossRefGoogle Scholar
  64. Rech, G. (2002). Forecasting with artificial neural network models. SSE/EFI working paper series in economics and finance 491, Stockholm School of Economics.Google Scholar
  65. Sadanaga, Y., Sengen, M., Takenaka, N., & Bandow, H. (2012). Analyses of the ozone weekend effect in Tokyo, Japan: regime of oxidant (O3 + NO2) production. Aerosol & Air Quality Research, 12, 161–168.Google Scholar
  66. Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and physics. United States: John Wiley & Sons Inc.Google Scholar
  67. Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environmental Modelling & Software, 22, 464–475. doi: 10.1016/j.envsoft.2006.02.001.CrossRefGoogle Scholar
  68. Siew, L. Y., Chin, L. Y., & Wee, P. M. J. (2008). ARIMA and integrated ARFIMA models for forecasting air pollution index in Shah Alam, Selangor. Malaysian Journal of Analytical Sciences, 12(1), 257–263.Google Scholar
  69. Simeonov, V., Einax, J. W., Stanimirova, I., & Kraft, J. (2002). Environmetric modeling and interpretation of river water monitoring data. Analytical and Bioanalytical Chemistry, 374, 898–905.CrossRefGoogle Scholar
  70. Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37, 4119–4224.CrossRefGoogle Scholar
  71. Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38, 3980–3992. doi: 10.1016/j.watres.2004.06,011.CrossRefGoogle Scholar
  72. Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques—a case study. Analytica Chimica Acta, 538, 355–374. doi: 10.1016/j.aca.2005.02.006.CrossRefGoogle Scholar
  73. Skrbi, C. B., Duri, S. I., & C-Mladenovi, C. N. (2007). Principal component analysis for soil contamination with organochlorine compounds. Chemosphere, 68, 2144–2152.CrossRefGoogle Scholar
  74. Sohn, S. H., Oh, S. C., & Yeo, Y. K. (1999). Prediction of air pollutants by using an artificial neural network. Korean Journal of Chemical Engineering, 16(3), 382–387. doi: 10.1007/BF02707129.CrossRefGoogle Scholar
  75. Sousa, S. I. V., Martins, F. G., Alvim-Ferraz, M. C. M., & Pereira, M. C. (2007). Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling & Software, 22, 97–103.CrossRefGoogle Scholar
  76. Sun, G., Hoff, S. J., Zelle, B. C., & Nelson, M. A. (2008). Development and comparison of backpropagation and generalized regression neural network models to predict diurnal and seasonal gas and PM10 concentrations and emissions from swine buildings. American Society of Agricultural and Biological Engineers, 51(2), 685–694.Google Scholar
  77. Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). New York: Harper & Row.Google Scholar
  78. Tecer, L. H. (2007). Prediction of SO2 and PM concentrations in a coastal mining area (Zonguldak, Turkey) using an artificial neural network. Polish Journal of Environmental Studies, 16(4), 633–638.Google Scholar
  79. Viana, M., Querol, X., Alastuey, A., Gil, J. I., & Menéndez, M. (2006). Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere, 65, 2411–2418.CrossRefGoogle Scholar
  80. Wei, X., Liu, Q., Lam, K. S., & Wang, T. (2012). Impact of precursor levels and global warming on peak ozone concentration in the Pearl River Delta Region of China. Advances in Atmospheric Sciences, 29, 635–645.CrossRefGoogle Scholar
  81. Wei-Zhen, L., Hong-Di, H., & Li-Yun, D. (2011). Performance assessment of air quality monitoring networks using principal component analysis and cluster analysis. Building and Environment, 46, 577–583.CrossRefGoogle Scholar
  82. Xie, H., Ma, F. & Bai, Q. (2009). Prediction of indoor air quality using artificial neural networks. 2009 Fifth International Conference on Natural Computation, 412–418.Google Scholar
  83. Yahaya, N., Ali, A., & Ishak, F. (2006) Air pollution index (API) and the effects on human health: case study in Terengganu City, Terengganu, Malaysia. Paper submitted to the International Association for People Environmental Studies (IAPS) Conference, September 2006, Alexandria, Egypt.Google Scholar
  84. Yetilmezsoy, K., & Demirel, S. (2007). Artificial neural network (ANN) approach for modeling of Cd(II) adsorption from aqueous solution by Antep Pistachio (Pistacia Vera L.) shells. Journal of Hazardous Materials, 153, 1288–1300.CrossRefGoogle Scholar
  85. Zekic-Susac, M., Pfeifer, S., & Djurdjevic, I. (2010). Classification of entrepreneurial intentions by neural networks, decision trees and support vector machines. Croatian Operational Research Review, 1, 62–73.Google Scholar
  86. Zelkic-Susac, M., Sarlija, N., & Pfeifer, S. (2013). Combining PCA analysis and artificial neural networks in modelling entrepreneurial intentions of students. Crotian Operational Research Review, 4, 306–317.Google Scholar
  87. Zhang, G., Eddy Patuwo, B., & Hu, M. Y. (1998). Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting, 14, 35–62. doi: 10.1016/S0169-2070(97)00044-7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Azman Azid
    • 1
  • Hafizan Juahir
    • 1
    Email author
  • Mohd Ekhwan Toriman
    • 1
  • Mohd Khairul Amri Kamarudin
    • 1
  • Ahmad Shakir Mohd Saudi
    • 1
  • Che Noraini Che Hasnam
    • 1
  • Nor Azlina Abdul Aziz
    • 1
  • Fazureen Azaman
    • 1
  • Mohd Talib Latif
    • 2
  • Syahrir Farihan Mohamed Zainuddin
    • 3
  • Mohamad Romizan Osman
    • 3
  • Mohammad Yamin
    • 1
  1. 1.East Coast Environmental Research Institute (ESERI)Universiti Sultan Zainal AbidinKuala TerengganuMalaysia
  2. 2.School of Environmental and Natural Resource Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Kulliyyah of ScienceInternational Islamic University MalaysiaKuantanMalaysia

Personalised recommendations