Water, Air, & Soil Pollution

, 225:2050 | Cite as

Effective Phosphate Removal from Synthesized Wastewater Using Copper–Chitosan Bead: Batch and Fixed-Bed Column Studies

  • Byungryul An
  • Ka-Young Jung
  • Sang-Hyup Lee
  • Seunghak Lee
  • Jae-Woo Choi
Article

Abstract

To remove phosphate from solution, a new class of sorbent based on chitosan bead (CB) was prepared using copper ion (Cu(II)) with/without a traditional crosslinking agent (glutaraldehyde [GLA]); these materials are referred to as CB-G-Cu and CB-Cu, respectively. Copper ions play a key role in the CB synthesis; these species crosslink each polymer chain, and during phosphate removal, they are the active functional group. Overall, 2.5 % (w/w) of chitosan is necessary to maintain the physical properties of the bead. In the FTIR spectra, adding GLA decreased the intensity of the amino group in chitosan, lowering the amount of copper in the CB. The maximum phosphate uptake (Q) for CB-Cu was 53.6 mg g−1 when calculated with the Langmuir isotherm, and the phosphate equilibrium was achieved in 12 h. Although the solution pH was not strongly affected, values below 7 are optimal for phosphate removal. The CB-Cu can be feasibly applied during a fixed column test, revealing that the phosphate breakthrough was 1.5 times higher than with CB-G-Cu.

Keywords

Phosphate removal Chitosan bead Crosslinking agent Competing ion 

References

  1. Agboh, O. C., & Qin, Y. (1997). Chitin and chitosan fibers. Polymers for Advanced Technologies, 8, 355–365.CrossRefGoogle Scholar
  2. An, B., & Zhao, D. Y. (2012). Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe–Mn oxide nanoparticles. Journal of Hazardous Materials, 211, 332–341.CrossRefGoogle Scholar
  3. An, B., Nam, J., Choi, J. W., Hong, S. W., & Lee, S. H. (2013a). Enhanced phosphate selectivity from wastewater using copper-loaded chelating resin functionalized with polyethylenimine. Journal of Colloid and Interface Science, 409, 129–134.CrossRefGoogle Scholar
  4. An, B., Son, H., Chung, J., Choi, J. W., Lee, S. H., & Hong, S. W. (2013b). Calcium and hydrogen effects during sorption of copper onto an alginate-based ion exchanger: batch and fixed-bed column studies. Chemical Engineering Journal, 232, 51–58.CrossRefGoogle Scholar
  5. Bajpai, S. K., & Sharma, S. (2004). Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. Reactive and Functional Polymers, 59, 129–140.CrossRefGoogle Scholar
  6. Barreiro-Iglesias, R., Coronilla, R., Concheiro, A., & Alvarez-Lorenzo, C. (2005). Preparation of chitosan beads by simultaneous cross-linking/insolubilisation in basic pH rheological optimisation and drug loading/release behavior. European Journal of Pharmaceutical Sciences, 24, 77–84.CrossRefGoogle Scholar
  7. Berger, J., Reist, M., Mayer, J. M., Felt, O., Peppas, N. A., & Gurny, R. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57, 19–34.CrossRefGoogle Scholar
  8. Celi, L., Barberis, E., & Marsan, F. A. (2000). Sorption of phosphate on goethite at high concentrations. Soil Science, 165, 657–664.CrossRefGoogle Scholar
  9. Chen, C. C., & Chung, Y. C. (2006). Arsenic removal using a biopolymer chitosan sorbent. Journal of Environmental Science and Health, Part A, 41, 645–658.CrossRefGoogle Scholar
  10. Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E. (2009). Ecology controlling eutrophication: nitrogen and phosphorus. Science, 323, 1014–1015.CrossRefGoogle Scholar
  11. Dai, J., Yang, H., Yan, H., Shangguan, Y. G., Zheng, Q. A., & Cheng, R. S. (2011). Phosphate adsorption from aqueous solutions by disused adsorbents: chitosan hydrogel beads after the removal of copper(II). Chemical Engineering Journal, 166, 970–977.CrossRefGoogle Scholar
  12. Dambies, L., Vincent, T., Domard, A., & Guibal, E. (2001). Preparation of chitosan gel beads by ionotropic molybdate gelation. Biomacromolecules, 2, 1198–1205.CrossRefGoogle Scholar
  13. Domard, A. (1987). Determination of N-acetyl content in chitosan samples by Cd measurements. International Journal of Biological Macromolecules, 9, 333–336.CrossRefGoogle Scholar
  14. Dorfner, K. (1972). Ion exchangers; properties and applications. Ann Arbor Science.Google Scholar
  15. Elwakeel, K. Z. (2010). Environmental application of chitosan resins for the treatment of water and wastewater: a review. Journal of Dispersion Science and Technology, 31, 273–288.CrossRefGoogle Scholar
  16. Fernandes, A. L. P., Morais, W. A., Santos, A. I. B., de Araujo, A. M. L., dos Santos, D. E. S., dos Santos, D. S., Pavinatto, F. J., Oliveira, O. N., Dantas, T. N. C., Pereira, M. R., & Fonseca, J. L. C. (2005). The influence of oxidative degradation on the preparation of chitosan nanoparticles. Colloid and Polymer Science, 284, 1–9.CrossRefGoogle Scholar
  17. Guibal, E., Milot, C., Eterradossi, O., Gauffier, C., & Domard, A. (1999). Study of molybdate ion sorption on chitosan gel beads by different spectrometric analyses. International Journal of Biological Macromolecules, 24, 49–59.CrossRefGoogle Scholar
  18. Hsien, T. Y., & Rorrer, G. L. (1995). Effects of acylation and cross-linking on the material properties and cadmium ion adsorption capacity of porous chitosan beads. Separation Science and Technology, 30, 2455–2475.CrossRefGoogle Scholar
  19. Jeon, C., & Park, K. H. (2005). Adsorption and desorption characteristics of mercury(II) ions using aminated chitosan bead. Water Research, 39, 3938–3944.CrossRefGoogle Scholar
  20. Kildeeva, N. R., Perminov, P. A., Vladimirov, L. V., Novikov, V. V., & Mikhailov, S. N. (2009). About mechanism of chitosan cross-linking with glutaraldehyde. Russian Journal of Bioorganic Chemistry, 35, 360–369.CrossRefGoogle Scholar
  21. Koyama, Y., & Taniguchi, A. (1986). Studies on chitin X. homogeneous cross-linking of chitosan for enhanced cupric ion adsorption. Journal of Applied Polymer Science, 31, 1951–1954.CrossRefGoogle Scholar
  22. Lee, C. G., Park, J. A., & Kim, S. B. (2012). Phosphate removal from aqueous solutions using slag microspheres. Desalination and Water Treatment, 44, 229–236.CrossRefGoogle Scholar
  23. Li, N., & Bai, R. B. (2005). Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms. Separation and Purification Technology, 42, 237–247.CrossRefGoogle Scholar
  24. Li, C., & Guan, X. H. (2011). Competitive adsorption of three different phosphate species on aluminum hydroxide. Fresenius Environmental Bulletin, 20, 1936–1941.Google Scholar
  25. Luengo, C., Brigante, M., Antelo, J., & Avena, M. (2006). Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements. Journal of Colloid and Interface Science, 300, 511–518.CrossRefGoogle Scholar
  26. Mi, F. L., Shyu, S. S., Wu, Y. B., Lee, S. T., Shyong, Y. J., & Huang, R. N. (2001). Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials, 22, 165–173.CrossRefGoogle Scholar
  27. Miretzky, P., & Cirelli, A. F. (2009). Hg(II) removal from water by chitosan and chitosan derivatives: a review. Journal of Hazardous Materials, 167, 10–23.CrossRefGoogle Scholar
  28. Modrzejewska, Z., & Kaminski, W. (1999). Separation of Cr(VI) on chitosan membranes. Industrial & Engineering Chemistry Research, 38, 4946–4950.CrossRefGoogle Scholar
  29. Muzzarelli, R. A. A. (2000). Chitosan per OS: from dietary supplement to drug carrier. AtecGoogle Scholar
  30. Nam, J. H., Lee, S. H., Choi, J. W., Hong, S. W., & An, B. (2013). Enhanced removal of phosphate on modified ion exchanger with competing ion. Journal of Korean Society of Water and Wastewater, 27, 121–128.CrossRefGoogle Scholar
  31. Ngah, W. S. W., Endud, C. S., & Mayanar, R. (2002). Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive and Functional Polymers, 50, 181–190.CrossRefGoogle Scholar
  32. Pawlak, A., & Mucha, A. (2003). Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta, 396, 153–166.CrossRefGoogle Scholar
  33. Snoeyink, V. L., & Jenkins, D. (1980). Water chemistry. WileyGoogle Scholar
  34. Steinwinder, B. T. R., & Zhao, D. Y. (2005). Selective removal of arsenate from drinking water using a polymeric ligand exchanger. Water Research, 39, 4993–5004.CrossRefGoogle Scholar
  35. Su, Y., Cui, H., Li, Q., Gao, S. A., & Shang, J. K. (2013). Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Research, 47, 5018–5026.CrossRefGoogle Scholar
  36. Tchobanoglous, G., Burton, F. L., Metcalf, & Eddy (1991). Wastewater engineering: treatment, disposal, and reuse. McGraw-HillGoogle Scholar
  37. Treybal, R. E. (1998). Mass-transfer operations. McGraw-Hill.Google Scholar
  38. USEPA. (2000). Nutrient criteria technical guidance manual: rivers and streams. EPA-822b-00-002. Washington, DC.Google Scholar
  39. Valdes, E. T., & Trivino, G. C. (2009). Chitosan metal complexes and chitosan–Cu ESR studies. Journal of Chilean Chemical Society, 54, 1–5.Google Scholar
  40. Varma, A. J., Deshpande, S. V., & Kennedy, J. F. (2004). Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers, 55, 77–93.CrossRefGoogle Scholar
  41. Wilde, E. W., & Benemann, J. R. (1993). Bioremoval of heavy-metals by the use of microalgae. Biotechnology Advances, 11, 781–812.CrossRefGoogle Scholar
  42. Zhang, G. S., Liu, H. J., Liu, R. P., & Qu, J. H. (2009). Removal of phosphate from water by a Fe–Mn binary oxide adsorbent. Journal of Colloid and Interface Science, 335, 168–174.CrossRefGoogle Scholar
  43. Zhao, D. Y., & SenGupta, A. K. (1998). Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers. Water Research, 32, 1613–1625.CrossRefGoogle Scholar
  44. Zhao, D. Y., & SenGupta, A. K. (2000). Ligand separation with a copper(II)-loaded polymeric ligand exchanger. Industrial & Engineering Chemistry Research, 39, 455–46.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Byungryul An
    • 1
  • Ka-Young Jung
    • 1
  • Sang-Hyup Lee
    • 1
    • 2
  • Seunghak Lee
    • 1
  • Jae-Woo Choi
    • 1
    • 3
  1. 1.Center for Water Resource Cycle ResearchKorea Institute of Science and TechnologySeoulSouth Korea
  2. 2.Graduate School of Convergence Green Technology and PolicyKorea UniversitySeoulSouth Korea
  3. 3.Department of Energy and Environmental EngineeringUniversity of Science and Technology (UST)DaejeonSouth Korea

Personalised recommendations