Arsenic Removal from Water by Sugarcane Bagasse: An Application of Response Surface Methodology (RSM)

Abstract

Adsorption is one of the best methods for arsenic removal from water which is established in the last few decades. Biosorption by natural biosorbents and agricultural by-product is an environmental friendly approach and has proved to be a cost-effective and non-hazardous technology for the removal of heavy metals from water. This paper describes batch test findings conducted to evaluate the feasibility of using sugarcane bagasse (SCB) as an industrial by-product of sugar industry to remove arsenic (As) from water and compare the results with the efficiency of activated carbon (AC) for arsenic (As) removal. The effects of three parameters, such as pH, adsorbent dosage (C a), and initial metal concentration (C 0) on the adsorption of arsenic were evaluated by using response surface methodology (RSM). It is discovered that AC and SCB removed up to ~89 and ~98 % of arsenic, respectively. The uptake capacities yielded from the batch experiment were about 31.25 mg/g for AC at pH ~7.4 and 11.9 mg/g for SCB at pH ~9. The equilibrium times achieved were 120 and 150 min for SCB and AC, respectively. This study shows that SCB is an efficient low-cost biosorption for arsenic removal from water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Achaw, O. W. (2012). A study of the porosity of activated carbons using the scanning electron microscope, Scanning electron microscopy, Dr. Viacheslav Kazmiruk (Ed.), ISBN: 978-953-51-0092-8, InTech.

  2. Akhtar, M., Hasany, S. M., Bhanger, M. I., & Iqbal, S. (2007). Low cost sorbents for the removal of methyl parathion pesticide from aqueous solutions. Chemosphere, 66, 1829–1838.

    CAS  Article  Google Scholar 

  3. Akhter, H., Cartledge, F. K., Roy, A., & Tittlebaum, M. E. (1997). Solidification/stabilization of arsenic salts: effects of long cure times. Journal of Hazardous Materials, 52, 247–264.

    CAS  Article  Google Scholar 

  4. Al-Khatib, L., Fraige, F., Al-Hwaiti, M., & Al-Khashman, O. (2012). Adsorption from aqueous solution onto natural and acid activated bentonite. American Journal of Environmental Science, 8, 510–522.

    CAS  Article  Google Scholar 

  5. Altundogan, H. S., Altundogan, S., Tumen, F., & Bildik, M. (2002). Arsenic adsorption from aqueous solutions by activated red mud. Waste Management, 22, 357–363.

    CAS  Article  Google Scholar 

  6. Amin, M. N., Kaneco, S., Kitagawa, T., Aleya, B., Katsumata, H., Suzuki, T., et al. (2006). Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Industrial and Engineering Chemistry Research, 45, 8105–8110.

    CAS  Article  Google Scholar 

  7. Ayyappan, R., Sophia, C. A., Swaminathan, K., & Sandhya, S. (2005). Removal of Pb(II) from aqueous solution using carbon derived from agricultural wastes. Process Biochemistry, 40, 1293–1299.

    CAS  Article  Google Scholar 

  8. Baskan, M. B., & Pala, A. (2011). Removal of arsenic from drinking water using modified natural zeolite. Desalination, 281, 396–403.

    Article  Google Scholar 

  9. Biswas, B. K., Inoue, J., Inoue, K., Kedar Nath, G., Harada, H., Ohto, K., et al. (2008). Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel. Journal of Hazardous Materials, 154, 1066–1074.

    CAS  Article  Google Scholar 

  10. Bodîrlău, R., & Teacă, C. A. (2009). Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides. Romanian Journal of Physiology, 54(1–2), 93–104.

    Google Scholar 

  11. Budinova, T., Petrov, N., Razvigorova, M., Parra, J., & Galiatsatou, P. (2006). Removal of arsenic(III) from aqueous solution by activated carbons prepared from solvent extracted olive pulp and olive stones. Industrial and Engineering Chemistry Research, 45, 1896–1901.

    CAS  Article  Google Scholar 

  12. Budinova, T., Savova, D., Tsyntsarski, B., Ania, C. O., Cabal, B., Parra, J. B., et al. (2009). Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions. Applied Surface Science, 255, 4650–4657.

    CAS  Article  Google Scholar 

  13. Cristina, R., Corrales, N. R., Magalhães, F., Mendes, T., Cruz Perrone, C., et al. (1989). Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2, N.L. Owen, D.W. Thomas, Infrared studies of “hard” and “soft” woods. Applied Spectroscopy, 43, 451–455.

    Article  Google Scholar 

  14. Di Natale, F., Erto, A., Lancia, A., & Musmarra, D. (2008). Experimental and modelling analysis of As(V) ions adsorption on granular activated carbon. Water Research, 42, 2007–2016.

    Article  Google Scholar 

  15. Eljamal, O., Sasaki, K., & Hirajima, T. (2011). Numerical simulation for reactive solute transport of arsenicin permeable reactive barrier column including zero-valent iron. Applied Mathematical Modelling, 35, 5198–5207.

    Article  Google Scholar 

  16. Freundlich, H. (1906). Adsorption solution. Zeitschrift für Physikalische Chemie, 57, 384–470.

    Google Scholar 

  17. Garg, U., Kaur, M. P., Jawa, G. K., Sud, D., & Garg, V. K. (2008). Removal of cadmium(II) from aqueous solutions by adsorption on agriculture waste biomass. Journal of Hazardous Materials, 154, 1149–1157.

    CAS  Article  Google Scholar 

  18. Gupta, V. K., & Ali, I. (2000). Utilization of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Separation and Purification Technology, 18, 131–140.

    CAS  Article  Google Scholar 

  19. Gupta, V. K., & Ali, I. (2001). Removal of DDD and DDE from wastewater using bagasse fly ash, a sugar industry waste. Water Research, 35(1), 33–40.

    CAS  Article  Google Scholar 

  20. Gupta, V. K., & Ali, I. (2004). Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. Journal of Colloid and Interface Science, 271, 321–328.

    CAS  Article  Google Scholar 

  21. Gupta, V. K., Mohan, D., & Sharma, S. (1998a). Removal of lead from wastewater using bagasse fly ash—a sugar industry waste material. Separation Science and Technology, 33(9), 1331–1343.

    CAS  Article  Google Scholar 

  22. Gupta, V. K., Sharma, S., Yadava, I. S., & Mohan, D. (1998b). Utilization of bagasse fly ash generated in sugar industry for the removal and recovery of phenol and p-nitrophenol from wastewater. Journal of Chemical Technology and Biotechnology, 71, 180–186.

    CAS  Article  Google Scholar 

  23. Gupta, V. K., Mohan, D., Sharma, S., & Park, K. T. (1999). Removal of chromium(VI) from electroplating industry wastewater using bagasse fly ash—a sugar industry waste material. Environmentalist, 19(2), 129–136.

    Article  Google Scholar 

  24. Gupta, V. K., Mohan, D., Sharma, S., & Sharma, M. (2000). Removal of basic dyes (rhodamine-B and methylene blue) from aqueous solutions using bagasse fly ash. Separation Science and Technology, 35(13), 2097–2113.

    CAS  Article  Google Scholar 

  25. Gupta, V. K., Jain, C. K., Ali, I., Sharma, M., & Saini, V. K. (2003). Removal of cadmium and nickel from waste water using bagasse fly ash—a sugar industry waste. Water Research, 37, 4038–4044.

    CAS  Article  Google Scholar 

  26. Gupta, V. K., Ali, I., Saini, V. K., Gerven, T. V., Bruggen, B. V., & Vandecasteele, C. (2005). Removal of dyes from wastewater using bottom ash. Industrial and Engineering Chemistry Research, 44(11), 3655–3664.

    CAS  Article  Google Scholar 

  27. Gupta, V. K., Ali, I., Suhas, J. S., & Saini, V. K. (2006). Adsorption of 2,4-d and carbofuran pesticides using fertilizer and steel industry wastes. Journal of Colloid and Interface Science, 299(2), 556–563.

    CAS  Article  Google Scholar 

  28. Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Suhas, J. S. (2009). Low cost adsorbents: growing approach to wastewater treatment—a review. Critical Reviews in Environmental Science and Technology, 39, 783–842.

    Article  Google Scholar 

  29. Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial and Engineering Chemistry Fundamentals, 5, 212–223. doi:10.1021/i160018a011.

    CAS  Article  Google Scholar 

  30. Hergert, H. L. (1971). Infrared spectra. In K. V. Sarkanen & C. H. Ludwig (Eds.), Lignin: occurrence (pp. 267–297). New York: Formation, Structure and Reactions, Wiley.

    Google Scholar 

  31. Irfan, M., Syed, Q., Abbas, S., Sher, M. G., Baig, S., & Nadeem, M. (2011). FTIR and SEM analysis of thermo-chemical fractionated sugarcane bagasse. Turkish Journal of Biochemistry-Turkish Journal of Biochemistry, 36(4), 322–328.

    CAS  Google Scholar 

  32. Kamala, C. T., Chu, K. H., Chary, N. S., Pandey, P. K., Rameshd, S. L., Sastry, A. R. K., et al. (2005). Removal of arsenic (III) from aqueous solutions using fresh and immobilized plant biomass. Water Research, 39, 2815–2826.

    CAS  Article  Google Scholar 

  33. Khoramzadeh, E., Nasernejad, B., & Halladj, R. (2013). Mercury biosorption from aqueous solutions by sugarcane bagasse. Journal of Taiwan Institute of Chemical Engineers, 44, 266–269.

    CAS  Article  Google Scholar 

  34. Ladeira, A. C. Q., & Ciminelli, V. S. T. (2004). Adsorption and desorption of arsenic on an oxisol and its constituents. Water Research, 38(8), 2087–2094.

    CAS  Article  Google Scholar 

  35. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403. doi:10.1021/ja02242a004.

    CAS  Article  Google Scholar 

  36. Lee, S. (2010). Application of activated carbon fiber (ACF) for arsenic removal in aqueous solution. Korean Journal of Chemical Engineering, 27, 110–115.

    CAS  Article  Google Scholar 

  37. Maiti, A., Sharma, H., Basu, J. K., & De, S. (2009). Modeling of arsenic adsorption kinetics of synthetic and contaminated groundwater on natural laterite. Journal of Hazardous Materials, 117, 928–934.

    Article  Google Scholar 

  38. Maji, S. K., Pal, A., & Pal, T. (2008). Arsenic removal from real-life groundwater by adsorption on laterite soil. Journal of Hazardous Materials, 151, 811–820.

    CAS  Article  Google Scholar 

  39. Mane, V. S., Mall, I. D., & Srivastava, V. C. (2007). Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dyes and Pigments, 73, 269–278.

    CAS  Article  Google Scholar 

  40. Manju, G. N., Raji, C., & Anirudhan, T. S. (1998). Evaluation of coconut husk carbon for the removal of arsenic from water. Water Research, 32(10), 3062–3070.

    CAS  Article  Google Scholar 

  41. Mohan, D., & Pitmann, C. U., Jr. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142, 1–53.

    CAS  Article  Google Scholar 

  42. Mohan, D., & Singh, K. P. (2002). Single and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Research, 36, 2304–2318.

    CAS  Article  Google Scholar 

  43. Murugesan, G. S., Sathishkumar, M., & Swaminathan, K. (2006). Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresource Technology, 97, 483–487.

    CAS  Article  Google Scholar 

  44. Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: process and product optimization using designed experiments (2nd ed.). USA: John Wiley and Sons.

    Google Scholar 

  45. Nasar, M., Emam, A., Sultan, M., & Abdel Hakim, A. A. (2010). Optimization and characterization of sugar-cane bagasse liquefaction process. Indian Journal of Science and Technology, 3(2), 0974–6846.

    Google Scholar 

  46. Owen, N. L., & Thomas, D. W. (1989). Infrared studies of “hard” and “soft” woods, Appl. Spectroscopy 43, 451–455

  47. Pandey, P. K., Choubey, S., Verma, Y., Pandey, M., & Chandrashekhar, K. (2009). Biosorptive removal of arsenic from drinking water. Bioresource Technology, 100, 634–637.

    CAS  Article  Google Scholar 

  48. Pattanayak, J., Mondal, K., Mathew, S., & Lalvani, S. B. (2000). A parametric evaluation of the removal of As(V) and As(III) by carbon based adsorbents. Carbon, 38, 589–596.

    CAS  Article  Google Scholar 

  49. Polowczyk, I., Bastrzyk, A., Koźlecki, T., Sawiński, W., Rudnicki, P., Sokołowski, A., et al. (2010). Use of fly ash agglomerates for removal of arsenic. Environmental Geochemistry and Health, 32, 361–366.

    CAS  Article  Google Scholar 

  50. Rao, M., Parwate, A. V., & Bhole, A. G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Management, 22, 821–830.

    CAS  Article  Google Scholar 

  51. Rao, M. M., Reddy, D. H. K. K., Venkateswarlu, P., & Seshaiah, K. (2009). Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste. Journal of Environmental Management, 90, 634–643.

    CAS  Article  Google Scholar 

  52. Rivera-Utrilla, J., Bautista-Toledo, I., Ferro- Garcy, M. A., & Moreno, C. (2001). Activated 1 carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. Journal of Chemical Technology and Biotechnology, 76, 1209–1215.

    CAS  Article  Google Scholar 

  53. Sahoo, C., & Gupta, A. K. (2012). Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach. Journal of Hazardous Materials, 215–216, 302–310.

    Article  Google Scholar 

  54. Sari, A., Uluozlü, Ö. D., & Tüzen, M. (2011). Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Separation Science and Technology, 167, 155–161.

    CAS  Google Scholar 

  55. Srivastava, S. K., Gupta, V. K., Johri, N., & Mohan, D. (1995a). Removal of 2,4,6-trinitrophenol using bagasse fly ash—a sugar industry waste material. Indian Journal of Chemical Technology, 2, 333–336.

    CAS  Google Scholar 

  56. Srivastava, S. K., Gupta, V. K., Yadava, I. S., & Mohan, D. (1995b). Removal of 2,4-dinitrophenol using bagasse fly ash—a sugar industry waste material. Fresenius Environmental Bulletin, 4, 550–557.

    CAS  Google Scholar 

  57. Trinh, T. K., & Kang, L. S. (2010). Application of response surface method as an experimental design to optimize coagulation tests. Environmental Engineering Research, 15, 063–070.

    Article  Google Scholar 

  58. Urík, M., Littera, P., Ševc, J., Kolenčík, M., & Čerňanský, S. (2009). Removal of arsenic (V) from aqueous solutions using chemically modified sawdust of spruce (Picea abies): kinetics and isotherm studies. International Journal of Environmental Science and Technology, 6, 451–456.

    Article  Google Scholar 

  59. Wang, J. P., Chen, Y. Z., Wang, Y., Yuan, S. J., & Yu, H. Q. (2011). Optimization of the coagulation–flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology. Water Research, 45, 5633–5640.

    CAS  Article  Google Scholar 

  60. Wilopo, W., Sasaki, K., Hirajima, T., & Yamanaka, T. (2008). Immobilization of arsenic and manganese in contaminated groundwater by permeable reactive barriers using zero valent iron and sheep manure. Materials Transactions, 49, 2265–2274.

    CAS  Article  Google Scholar 

  61. Zhang, J., Fu, D., Xu, Y., & Liu, C. (2010). Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 photocatalyst by response surface methodology. Journal of Environmental Sciences, 22, 1281–1289.

    CAS  Article  Google Scholar 

  62. Zhu, H., Jia, Y., Wu, X., & Wang, H. (2009). 106. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 172, 1591–1596.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bahram Nasernejad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tajernia, H., Ebadi, T., Nasernejad, B. et al. Arsenic Removal from Water by Sugarcane Bagasse: An Application of Response Surface Methodology (RSM). Water Air Soil Pollut 225, 2028 (2014). https://doi.org/10.1007/s11270-014-2028-4

Download citation

Keyword

  • Arsenic removal
  • Activated carbon
  • Sugarcane bagasse
  • Adsorption
  • Response surface methodology (RSM)