Skip to main content
Log in

Responses of Phalaris canariensis L. Exposed to Commercial Fuels during Growth

Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The growth behavior of canary grass (Phalaris canariensis L) when cultivated in presence of farming fuels is reported in this work. P. canariensis L. is relevant in several countries. It is an emergent plant for phytoremediation and biofuel activities. The following variables: root length, stem length, total plant weight, green tissue weight (tiller, leaf), and total chlorophyll and chlorophyll a/b ratio, were monitored during the growth in presence of commercial fuels (premium grade, regular grade, diesel, and kerosene) at different concentrations. We applied a comprehensive statistical analysis to understand the results: Univariate analysis, factorial analysis of variance, and subsequent Tukey test were applied to the variables to assess the significance of the differences found. The normality of these variables was analyzed with the Shapiro Wilk test. All parameters were affected by all type and concentrations of fuels and its interaction. This is one of the first reported cases which describe the growth parameters responses from canary grass when cultivated in presence of an essentially constant concentration of farming fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Abeles, F. B., Morgan, P. W., & Saltveit, M. E., Jr. (1992). Ethylene in plant biology (2nd ed.). San Diego: Academic.

    Google Scholar 

  • Adam, G., & Duncan, H. (2002). Influence of diesel fuel on seed germination. Environmental Pollution, 120, 363–370.

    Article  CAS  Google Scholar 

  • Alarcón, A., Delgadillo Martínez, J., Franco Ramírez, A., Davies, F. T., Jr., & Ferrera Cerrato, R. (2006). Influence of two polycyclic aromatic hydrocarbons on spore germination, and phytoremediation potential of Gigaspora margarita. Review International Contaminant Ambientale, 22, 39–47.

    Google Scholar 

  • Alkio, M., Tabuchi, T. M., Wang, X., & Colon-Carmona, A. (2005). Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. Journal of Experimental Botany, 56, 2983–2994.

    Article  CAS  Google Scholar 

  • Balwin, L. L. (1922). Modification of soil flora induced by application of crude petroleum. Soil Science, 14, 467–477.

    Google Scholar 

  • Burd, G. I., Dixon, D. G., & Glick, B. G. (1998). Plant growth promoting bacteria that decease heavy metal toxicity in plants. Applied and Environment Microbiology, 64, 3663–3669.

    CAS  Google Scholar 

  • Bushnell, L. D., & Haas, H. F. (1941). Journal of Bacteriology, 41, 653.

    CAS  Google Scholar 

  • Concepción, J. L. (1999). Customs, traditions and medicinal remedies in Canary Island (Spain). Volume II: healing plants. Spain: Graficolor/Cultural Association of the Canary Islands, La Laguna (Tenerife).

    Google Scholar 

  • Deuel, L., & Holliday, G. H. (1997). Soil remediation for the petroleum extraction industry (2nd ed.). Tulsa Oklahoma, USA: Penn Well Publishing Co.

    Google Scholar 

  • De viana, M. L., Plaza, J., & Ruggieri, V. (2003). Survey generation and destiny of residues of total petroleum hydrocarbons (TPH) in the city of Salta (Argentina). Andes, 14, 331–340.

    Google Scholar 

  • Glick, B. R. (1995). The enhancement of plant growth by free living bacteria. Canadian Journal of Microbiology, 41, 109–117.

    Article  CAS  Google Scholar 

  • Holliday, G. H., & Deuel, L. E. Jr. (2006). Rational methods for evaluating and designing remediation programs for agricultural soils, in: Track2 Cleanup and Technology Transfer Remediation. International conference on The Future of Agriculture: Science, Stewardship, and Sustainability. Sacramento, California, USA, pp. 158–169.

  • Huang, X. D., El Alawi, Y., Penrose, D. M., Glick, B. R., & Greenberg, B. M. (2004). Responses of three grass species to creosote during phytoremediation. Environmental Pollution, 130, 453–463.

    Article  CAS  Google Scholar 

  • Kirchmann, H., & Thorvaldsson, G. (2000). Challenging targets for future agriculture. European Journal of Agronomy, 12, 145–161.

    Article  Google Scholar 

  • Laskowski, M., Grieneisen, V. A., Hofhuis, H., ten Hove, C. A., Hogeweg, P., Mare, A. F. M., et al. (2008). Root system architecture from coupling cell shape to auxin transport. PLoS Biology, 6(12), e307. doi:10.1371/journal.pbio.0060307.

    Article  Google Scholar 

  • Ma, B., He, Y., Chen, H., Xu, J., & Rengel, Z. (2010). Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis. Environmental Pollution, 158, 855–861.

    Article  CAS  Google Scholar 

  • MacKinnon, G., & Duncan, H. J. (2013). Phytotoxicity of branched cyclohexanes found in the volatile fraction of diesel fuel on germination of selected grass species. Chemosphere, 90, 952–957.

    Article  CAS  Google Scholar 

  • Marwood, C. A., Solomon, K. R., & Greenberg, B. W. (2001). Chlorophyll fuorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of PAHs. Environmental Toxicology and Chemistry, 20, 890–898.

    Article  CAS  Google Scholar 

  • Miller, R. W., & Honarvar, S. (1975). Effects of drilling fluid-component mixtures on plants and soil, in: Environmental aspects of chemical use in well-drilling operation, Conference Proceedings, May, Houston, TX EPA 560/1-75-004. pp. 125–143.

  • Moran, R., & Porath, D. (1980). Chlorophyll determination in tissue using N, N-dimethylforamide. Plant Physiology, 65, 478–479.

    Article  CAS  Google Scholar 

  • Nakata, C., Qualizza, C., MacKinnon, M., & Renault, S. (2011). Growth and physiological responses of Triticum aestivum and Deschampsia caespitosa exposed to petroleum coke. Water Air Soil Pollution, 216, 59–72.

    Article  CAS  Google Scholar 

  • Oram, R. N. (2004). Phalaris canariensis is a domesticated form of P. brachystachys. Genetic Resources and Crop Evolution, 51, 259–267.

    Article  Google Scholar 

  • Pons Jiménez, M. (2010). Extraction of hydrocarbons and petroleum compounds in agricultural soils of the lower Tonalá river basin. México: MSc. Thesis. Tabasco.

    Google Scholar 

  • Putnam, D. H., Oelke E. A., Oplinger E. S., Doll J. D., & Peters J. B. (1990). Annual Canarygrass, [Internet] Alternative Field Crops Manual, University of Wisconsin-Extension, Cooperative Extension, University of Minnesota, Center for Alternative Plant & Animal Products & the Minnesota Extension Service, Madison WI, United States, 5 pp http://www.hort.purdue.edu/newcrop/afcm/cangrass.html, Accessed Dec 2013.

  • Scurfield, G. (1963). The effects of temperature on the early vegetative growth of Phalaris canariensis L. and P. tuberosa L. Australian Journal of Agricultural Research, 14(2), 165–179. doi:10.1071/AR9630165.

    Article  Google Scholar 

  • Schnoor, J. L. (1997). Phytoremediation, Technology Overview Report, Ground-water remediation Technologies Analysis Center, Series E, Vol. I.

  • Siciliano, S. D., & Germida, V. (1997). Bacteria inoculants of forage grasses enhance degradation of 2-chlorobenzoiz acid in soil. Environmental Toxicology and Chemistry, 16, 1098–1104.

    Article  CAS  Google Scholar 

  • Yagüez, J. D. (2002). Canary Grass: A forgotten culture. National Institute of Agricultural Technology. (Alpiste: Un cultivo olvidado). Instituto Nacional de Tecnología Agropecuaria. INTA - Ministry of Agricultural Subjects. Buenos Aires.

Download references

Acknowledgments

This work was supported by grants from the Comisiones de Investigaciónes Científicas de la Provincia de Buenos Aires (CIC), Secretaría de Estado de Ciencia y Técnica (SECYT), and Universidad Nacional de Mar del Plata (UNMdP). We thank Agustina Zagame from Instituto San Alberto (Mar del Plata, Argentina) for her help in some assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Laura Patat.

Additional information

Capsule

P. canariensis L, an emergent plant for phytoremediation and biofuel activities, is affected by commercial fuels usually present in fuel spills at farms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patat, M.L., Passoni, I., Arca, J.M. et al. Responses of Phalaris canariensis L. Exposed to Commercial Fuels during Growth. Water Air Soil Pollut 225, 2021 (2014). https://doi.org/10.1007/s11270-014-2021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2021-y

Keywords

Navigation