Characterization of Reactive Red-120 Decolorizing Bacterial Strain Acinetobacter junii FA10 Capable of Simultaneous Removal of Azo Dyes and Hexavalent Chromium

Abstract

Continual discharge of textile wastewaters loaded with a variety of synthetic dyes and metals is considered as a huge threat to surrounding ecosystems. In order to treat these undesirable pollutants, microbial bioremediation is considered as an efficient and economical technique. This study was conducted to evaluate the use of bacterial strains for simultaneous removal of azo dyes and hexavalent chromium [Cr(VI)]. Fifty-eight bacterial strains were isolated from Paharang drain wastewater and tested for their potential to decolorize reactive red-120 (RR-120) in the presence of 25 mg L−1 of Cr(VI). Among the tested isolates, FA10 decolorized the RR-120 most efficiently and was identified as Acinetobacter junii strain FA10. Based on quadratic polynomial equation and response surfaces given by the response surface methodology (RSM), Cr concentration and pH were found to be the main factors governing the RR-120 decolorization by FA10. The strain FA10 also exhibited a substantial salt resistance since it showed a considerable decolorization of RR-120 even in the presence of 150 g L−1 of NaCl. Moreover, the strain FA10 also showed the potential to simultaneously remove the Cr(VI) and the selected azo dyes in the same medium. More than 80 % of the initially added Cr(VI) was removed over 72 h of incubation along with the appreciable decolorization efficiency. The strain FA10 also exhibited good tolerance to considerable levels of different heavy metals. The findings of this study suggest that the strain FA10 might serve as an efficient bioresource to develop the biotechnological approaches for simultaneous removal of different azo dyes and heavy metals including Cr(VI).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdel-El-Haleem, D. (2003). Acinetobacter: environmental and biotechnological applications. African Journal of Biotechnology, 2, 71–74.

    Google Scholar 

  2. Ahemad, M., & Malik, A. (2012). Bioaccumulation of heavy metals by zinc resistant isolated from agricultural soils irrigated with wastewater. Journal of Bacteriology, 2, 12–21.

    Article  Google Scholar 

  3. Annuar, M. S. M., Adnan, S., Vikineswary, S., & Chisti, Y. (2009). Kinetics and energetics of azo dye decolorization by Pycnoporus sanguineus. Water, Air, and Soil Pollution, 202, 179–188.

    CAS  Article  Google Scholar 

  4. Arunachalan, R., & Annadurai, G. (2011). Optimized response surface methodology for adsorption of dyestuff from aqueous solution. Journal of Environmental Science and Technology, 4, 65–72.

    Article  Google Scholar 

  5. Asad, S., Amoozegar, M. A., Pourbaee, A. A., Sarbolouki, M. N., & Dastgheib, S. M. M. (2007). Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource Technology, 98, 2082–2088.

    CAS  Article  Google Scholar 

  6. Boer, C. G., Obici, L., Sourza, C. G., & Piralta, R. M. (2004). Decolourization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main lignolytic enzyme. Bioresource Technology, 94, 107–112.

    CAS  Article  Google Scholar 

  7. Chacko, J. T., & Subramaniam, K. (2011). Enzymatic degradation of azo dyes—a review. International Journal of Environmental Sciences, 1, 1250–1260.

    Google Scholar 

  8. Chan, G. F., Rashid, N. A. A., Koay, L. L., Chang, S. Y., & Tan, W. L. (2011). Identification and optimization of novel NAR-1 bacterial consortium for the biodegradation of orange II. Insight Biotechnology, 1, 7–16.

    Article  Google Scholar 

  9. Chan, G. F., Rashid, N. A. A., Chua, L. S., Abllah, N., Nasiri, R., Ikubar, M. R. M., et al. (2012). Communal microaerophilic–aerobic biodegradation of amaranth by novel NAR-2 bacterial consortium. Bioresource Technology, 105, 48–59.

    CAS  Article  Google Scholar 

  10. Chang, J. S., & Lin, Y. C. (2000). Fed-batch bioreactor strategies for microbial decolorization of azo dye using a Pseudomonas luteola strain. Biotechnology Progress, 16, 979–985.

    CAS  Article  Google Scholar 

  11. Cheung, K. H., & Gu, J. D. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. International Biodeterioration and Biodegradation, 59, 8–15.

    CAS  Article  Google Scholar 

  12. Desai, C., Jain, K., Patel, B., & Madamwar, D. (2009). Efficacy of bacterial consortium-AIE2 for contemporaneous Cr(VI) and azo dye bioremediation in batch and continuous bioreactor systems, monitoring steady-state bacterial dynamics using qPCR assays. Biodegradation, 20, 813–826.

    CAS  Article  Google Scholar 

  13. Dhal, B., Thatoi, H., Das, N., & Pandey, B. D. (2010). Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. Journal of Chemical Technology and Biotechnology, 85, 1471–1479.

    CAS  Google Scholar 

  14. Elbanna, K., Hassan, G., Khider, M., & Mandour, R. (2010). Safe biodegradation of textile azo dyes by newly isolated lactic acid bacteria and detection of plasmids associated with degradation. Journal of Bioremediation and Biodegradation. doi:10.4172/2155-6199.1000112.

    Google Scholar 

  15. Essahale, A., Malki, M., Marin, I., & Moumni, M. (2012). Hexavalent chromium reduction and accumulation by Acinetobacter AB1 isolated from Fez Tanneries in Morocco. Indian Journal of Microbiology, 52, 48–53.

    CAS  Article  Google Scholar 

  16. Fazli, M. M., Mesdaghinia, A. R., Naddafi, K., Nasseri, S., Yunesian, M., Assadi, M. M., et al. (2010). Optimization of reactive blue 19 g colorization by Ganoderma sp. using response surface methodology. Iranian Journal of Environmental Health Science and Engineering, 7, 35–42.

    CAS  Google Scholar 

  17. Franciscon, E., Grossman, M. J., Paschoal, J. A., Rayes, F. G., & Durrant, R. J. (2012). Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. SpringerPlus. doi:10.1186/2193-1801-1-37.

    Google Scholar 

  18. Ghodake, S., Kalme, S. D., Jadhav, J. P., & Govindwar, S. P. (2009). Purification and partial characterization of lignin peroxidase from Acinetobacter calcoaceticus NCIM 2890 and its application in decolorization of textile dyes. Applied Biochemistry and Biotechnology, 152, 6–14.

    CAS  Article  Google Scholar 

  19. Ghodake, G., Jadhav, U., Tamboli, D., Kagalkar, A., & Govindwar, S. (2011). Decolorization of textile dyes and degradation of mono-azo dye amaranth by Acinetobacter calcoaceticus NCIM 2890. Indian Journal of Microbiology, 51, 501–508.

    CAS  Article  Google Scholar 

  20. Hafshejani, M. K., Ogugbue, C. J., & Morad, N. (2013). Application of response surface methodology for optimization of decolorization and mineralization of triazo dye Direct Blue 71 by Pseudomonas aeruginosa. 3 Biotech. doi:10.1007/s13205-013-0192-7.

    Google Scholar 

  21. Hameed, A., & Hasnain, S. (2005). Cultural characteristics of chromium resistant unicellular cyanobacteria isolated from local environment in Pakistan. Chinese Journal of Oceanology and Limnology, 23, 433–441.

    CAS  Article  Google Scholar 

  22. Horton, R., Apel, W. A., Thompson, V. S., & Sheridan, P. P. (2006). Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens. BMC Microbiology, 6, 1–8.

    Article  Google Scholar 

  23. Hussain, S., Devers-Lamrani, M., El-Azhari, N., & Martin-Laurent, F. (2011). Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil. Biodegradation, 22, 637–650.

    CAS  Article  Google Scholar 

  24. Hussain, S., Maqbool, Z., Ali, S., Yasmeen, T., Imran, M., Mahmood, F., et al. (2013). Biodecolorization of reactive black-5 by a metal and salt tolerant bacterial strain Pseudomonas sp. RA20 isolated from Paharang drain effluents in Pakistan. Ecotoxicology and Environmental Safety, 98, 331–338.

    CAS  Article  Google Scholar 

  25. Ibrahim, A. S. S., El-Tyaeb, A. M., Elbadawi, Y. B., & Al-salamah, A. A. (2011). Isolation and characterization of novel potent Cr(VI) reducing alkaliphilic Amphibacillus sp. KSUCr3 from hypersaline soda lakes. Electronic Journal of Biotecnology, 14, 1–14.

    Google Scholar 

  26. Ilias, M., Rafiqullah, I. M., Debnath, B. C., Mannan, K. S. B., & Hoq, M. M. (2011). Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents. Indian Journal of Microbiology, 51, 76–81.

    CAS  Article  Google Scholar 

  27. Jalandoni-Buan, A. C., Decena-soliven, A. L. A., Cao, E. P., Barraquio, V. L., & Barraquio, W. L. (2009). Congo red decolorizing activity under microcosm and decolorization of other dyes by congo red decolorizing bacteria. Philippine Journal of Science, 138, 125–132.

    Google Scholar 

  28. Johansson, H. E., Johansson, M. K., Wong, A. C., Armstrong, E. S., Peterson, E. J., Grant, R. E., et al. (2011). BTI1, an azoreductase with pH-dependent substrate specificity. Applied and Environmental Microbiology, 77, 4223–4225.

    CAS  Article  Google Scholar 

  29. Kalme, S. D., Parshetti, G. K., Jadhav, S. U., & Govindwar, S. P. (2007). Biodegradation of benzidine based dye direct blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresource Technology, 98, 1405–1410.

    CAS  Article  Google Scholar 

  30. Karthikeyan, K., Nanthakumar, K., Shanthi, K., & Lakshmanaperumalsamy, P. (2010). Response surface methodology for optimization of culture conditions for dye decolorization by fungus, Aspergillus niger HM11 isolated from dye affected soil. Journal of Microbiology, 2, 213–222.

    CAS  Google Scholar 

  31. Khalid, A., Arshad, M., & Crowley, D. E. (2008). Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains. Applied Microbiology and Biotechnology, 78, 361–369.

    CAS  Article  Google Scholar 

  32. Khalid, A., Kausar, F., Arshad, M., Mahmood, T., & Ahmed, I. (2012). Accelerated decolorization of reactive dyes under saline conditions by bacteria isolated from Arabian seawater sediment. Applied Microbiology and Biotechnology, 96, 1599–1606.

    CAS  Article  Google Scholar 

  33. Khehra, M. S., Saini, H. S., Sharma, D. K., Chadha, B. S., & Chimni, S. S. (2006). Biodegradation of azo dye C.I. acid red 88 by an anoxiceaerobic sequential bioreactor. Dyes and Pigments, 70, 1–7.

    CAS  Article  Google Scholar 

  34. Li, Y., Shi, J. Q., Qu, R. J., Feng, M. B., Liu, F., Wang, M., et al. (2012). Toxicity assessment on three direct dyes (D-BLL, D-GLN, D-3RNL) using oxidative stress bioassay and quantum parameter calculation. Ecotoxicology and Environmental Safety, 86, 132–140.

    CAS  Article  Google Scholar 

  35. Lin, J., Zhang, X., Li, Z., & Lei, L. (2010). Biodegradation of reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate. Bioresource Technology, 101, 34–40.

    CAS  Article  Google Scholar 

  36. Liu, G., Zhou, J., Meng, X., Fu, S. Q., Wang, J., Jin, R., et al. (2013). Decolorization of azo dyes by marine Shewanella strains under saline conditions. Applied Microbiology and Biotechnology, 97, 4187–4197.

    CAS  Article  Google Scholar 

  37. Mahajan, G., & Sud, D. (2013). Bioremediation of Cr (VI) metal ion from aqueous solutions using modified lignocellulosic agricultural waste biomass. International Journal of Advanced Technology & Engineering Research, 3, 35–43.

    Google Scholar 

  38. Mahmood, S., Khalid, A., Mahmood, T., Arshad, M., & Ahmad, R. (2013). Potential of newly isolated bacterial strains for simultaneous removal of hexavalent chromium and reactive black-5 azo dye from tannery effluent. Journal of Chemical Technology and Biotechnology, 88, 1505–1513.

    Google Scholar 

  39. Mali, P. L., Mahajan, M. M., Patil, D. P., & Kulkarni, M. V. (2000). Biodecolorisation of members of triphenylmethane and azo groups of dyes. Journal of Scientific and Industrial Research, 59, 221–224.

    CAS  Google Scholar 

  40. Mclean, J., & Beveridge, T. J. (2001). Chromate reduction in Pseudomonas isolated from a site contaminated with chromate copper arsenate. Applied and Environmental Microbiology, 67, 1076–1084.

    CAS  Article  Google Scholar 

  41. Mcmullan, G., Meehan, C., Conneely, A., Nirby, N., Robinson, T., Nigam, P., et al. (2001). Mini review: microbial decolourization and degradation of textile dyes. Applied Microbiology and Biotechnology, 56, 81–87.

    CAS  Article  Google Scholar 

  42. Mishra, R., Sinha, V., Kannan, A., & Upreti, R. K. (2012). Reduction of chromium-VI by chromium resistant lactobacilli: a prospective bacterium for bioremediation. Toxicology International, 19, 25–30.

    CAS  Article  Google Scholar 

  43. Mistry, K., Desai, C., & Patel, K. (2010). Chromate reduction by Vogococcus sp. isolated from Cr(VI) contaminated industrial effluent. Electronic Journal of Biology, 6, 6–12.

    Google Scholar 

  44. Mohana, S., Shrivastava, S., Divecha, J., & Madamwar, D. (2008). Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium. Bioresource Technology, 99, 562–569.

    CAS  Article  Google Scholar 

  45. Molaei, S., Yaghmaei, S., & Ghobadi, Z. (2011). A study of Acidithiobacillus ferrooxidans DSMZ 583 adaptation to heavy metals. Iranian Journal of Biotechnology, 9, 133–144.

    CAS  Google Scholar 

  46. Moutaouakkil, A., Zeroual, Y., Dzayri, Z. F., Talbi, M., Lee, K., Blaghen, M., et al. (2003). Purification and partial characterization of azoredutase from Enterobacter agglomerans. Archives of Biochemistry and Biophysics, 413, 139–146.

    CAS  Article  Google Scholar 

  47. Myers, R. H., & Anderson-Cook, C. M. (2009). Response surface methodology: process and product optimization using designed experiments (vol. 705). John Wiley & Sons.

  48. Neifar, M., Jaouani, A., Kamoun, A., Ellouze-Ghorbel, R., & Ellouze-Chaabouni, S. (2011). Decolorization of solophenyl red 3BL polyazo dye by laccase-mediator system: optimization through response surface methodology. Enzyme Research. doi:10.4061/2011/179050.

    Google Scholar 

  49. Ng, T. W., Cai, Q., Wong, C., Chow, A. T., & Wong, P. (2010). Simultaneous chromate reduction and azo dye decolourization by Brevibacterium casei: azo dye as electron donor for chromate reduction. Journal of Hazardous Materials, 182, 792–800.

    CAS  Article  Google Scholar 

  50. Ozturk, A., & Abdullah, M. I. (2006). Toxicological effect of indole and its azo dye derivatives on some microorganisms under aerobic conditions. Science of the Total Environment, 358, 137–142.

    Article  Google Scholar 

  51. Pandey, A., Singh, P., & Lyengar, L. (2007). Bacterial decolorization and degradation of azo dyes. International Biodeterioration and Biodegradation, 59, 73–84.

    CAS  Article  Google Scholar 

  52. Park, D., Yun, Y. S., & Park, J. M. (2006). Comment on the removal mechanism of hexavalent chromium by biomaterials or biomaterial based activated carbons. Industrial and Engineering Chemistry Research, 45, 2405–2407.

    CAS  Article  Google Scholar 

  53. Pellerin, C., & Booker, S. M. (2000). Reflections on hexavalent chromium: health hazards of an industrial heavyweight. Environmental Health Perspectives, 108, 402–407.

    Article  Google Scholar 

  54. Peyton, B. M., Wilson, T., & Yonge, D. R. (2002). Kinetics of phenol biodegradation in high salt solutions. Water Research, 36, 4811–4820.

    CAS  Article  Google Scholar 

  55. Phugare, S. S., Kalyani, D. C., Surwase, S. N., & Jadhav, J. A. (2011). Ecofriendly degradation and detoxification of textile effluent by a developed bacterial consortium. Ecotoxicology and Environmental Safety, 74, 1288–1296.

    CAS  Article  Google Scholar 

  56. Quintelas, C., Fernandes, B., Castro, J., Figueiredo, H., & Tavares, T. (2008). Biosorption of Cr(VI) by three different bacterial species supported on granular activated carbon—a comparative study. Journal of Hazardous Materials, 153, 799–809.

    CAS  Article  Google Scholar 

  57. Ramya, M., Anusha, B., Kalavathy, S., & Devilaksmi, S. (2007). Biodecolorization and biodegradation of reactive blue by Aspergillus sp. African Journal of Biotechnology, 6, 1441–1445.

    CAS  Google Scholar 

  58. Rangadurai, S., Preetha, B., & Viruthagiri, T. (2012). Respose surface technique for optimization of parameters for decolorization of reactive red BS using Trametes hiruta. International Journal of ChemTech Research, 4, 21–28.

    Google Scholar 

  59. Rousk, J., Brookes, P. C., & Baath, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75, 1589–1596.

    CAS  Article  Google Scholar 

  60. Sadettin, S., & Donmez, G. (2007). Simultaneous bioaccumulation of reactive dye and chromium (VI) by using thermophile Phormidium sp. Enzyme and Microbial Technology, 41, 175–180.

    CAS  Article  Google Scholar 

  61. Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan Institute of Chemical Engineers, 42, 138–157.

    CAS  Article  Google Scholar 

  62. Shertate, R. S., & Thorat, P. R. (2013). Decolorization and biodegradation of textile azo dye sunset yellow FCF by acclimatized marine bacteria. Indian Streams Research Journal, 3, 1–7.

    Google Scholar 

  63. Silva, B., Figueiredo, H., Neves, I. C., & Tavares, T. (2009). The role of pH on Cr(VI) reduction and removal by Arthrobacter viscosus. International Journal of Chemical and Biological Engineering, 2, 100–103.

    CAS  Google Scholar 

  64. Tan, L., Qu, Y., Zhou, J., Ma, F., & Li, A. (2009). Dynamics of microbial community for X-3B wastewater decolorization coping with high-salt and metal ions conditions. Bioresource Technology, 100, 3003–3009.

    CAS  Article  Google Scholar 

  65. Tripathi, A., & Srivastave, S. K. (2011). Ecofriendly treatment of azo dyes: biodecolorization using bacterial strain. International Journal of Bioscience Biochemistry and Bioinformatics, 1, 37–40.

    Article  Google Scholar 

  66. Viamajala, S., Peyton, B. M., Sani, R. K., Apel, W. A., & Petersen, J. N. (2004). Toxic effects of chromium(VI) for hexavalent chromium which because of its high on anaerobic and aerobic growth of Shewanella oneidensis MR-1. Biotechnology Progress, 20, 87–95.

    CAS  Article  Google Scholar 

  67. Vullo, D. L., Ceretti, H. M., Alejandra, M. D., Ramirez, S. A. M., & Zalts, A. (2008). Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii. Bioresource Technology, 99, 5574–5581.

    CAS  Article  Google Scholar 

  68. Zahoor, A., & Rehman, A. (2009). Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. Journal of Environmental Sciences, 21, 814–820.

    Article  Google Scholar 

  69. Zayed, A. M., & Terry, N. (2003). Chromium in the environment: factors affecting biological remediation. Plant and Soil, 249, 139–156.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research work was jointly funded by Higher Education Commission of Pakistan and Government College University Faisalabad, Pakistan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sabir Hussain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 15 kb)

Table S2

(DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anwar, F., Hussain, S., Ramzan, S. et al. Characterization of Reactive Red-120 Decolorizing Bacterial Strain Acinetobacter junii FA10 Capable of Simultaneous Removal of Azo Dyes and Hexavalent Chromium. Water Air Soil Pollut 225, 2017 (2014). https://doi.org/10.1007/s11270-014-2017-7

Download citation

Keywords

  • Azo dyes
  • Hexavalent chromium
  • Bioremoval
  • Acinetobacter junii strain FA10
  • Response surface methodology (RSM)