Advertisement

Changes in Soil Dissolved Organic Carbon Affect Reconstructed History and Projected Future Trends in Surface Water Acidification

  • Jakub HruškaEmail author
  • Pavel Krám
  • Filip Moldan
  • Filip Oulehle
  • Christopher D. Evans
  • Richard F. Wright
  • Jiří Kopáček
  • Bernard J. Cosby
Article

Abstract

Preindustrial (1850s) and future (2060) streamwater chemistry of an anthropogenically acidified small catchment was estimated using the MAGIC model for three different scenarios for dissolved organic carbon (DOC) concentrations and sources. The highest modeled pH = 5.7 for 1850s as well as for 2060 (pH = 4.4) was simulated given the assumption that streamwater DOC concentration was constant at the 1993 level. A scenario accounting for an increase of DOC as an inverse function of ionic strength (IS) of soilwater and streamwater resulted in much lower preindustrial (pH = 4.9) and future recovery to (pH = 4.1) if the stream riparian zone was assumed to be the only DOC source. If upland soilwater (where significant DOC increase was observed at −5 and −15 cm) was also included, DOC was partly neutralized within the soil and higher preindustrial pH = 5.3 and future pH = 4.2 were estimated. The observed DOC stream flux was 2–4 times higher than the potential carbon production of the riparian zone, implying that this is unlikely to be the sole DOC source. Modeling based on the assumption that stream DOC changes are solely attributable to changes in the riparian zone appears likely to underestimate preindustrial pH.

Keywords

Acidification Surface waters Soils Dissolved organic carbon MAGIC model Preindustrial water chemistry 

Notes

Acknowledgments

Funding was provided by Operational Programme of the European Union (CZ.1.05/1.1.00/02.0073) the CzechGlobe—Center for Global Change Research, European Commission 7th Framework Program Project SoilTrEC No. 244118, and the Grant Agency of the Czech Republic No. 14-33311S.

Supplementary material

11270_2014_2015_MOESM1_ESM.pdf (89 kb)
Online Resource 1 (PDF 89 kb)
11270_2014_2015_MOESM2_ESM.pdf (92 kb)
Online Resource 2 (PDF 91 kb)

References

  1. Banwart, S., Menon, M., Bernasconi, S. M., Bloem, J., Blum, W. E. H., de Souza, D. M., et al. (2012). Soil processes and functions across an international network of critical zone observatories: introduction to experimental methods and initial results. Comptes Rendus Geoscience, 344, 758–772.CrossRefGoogle Scholar
  2. Battarbee, R. W., Monteith, D. T., Juggins, S., Evans, C. D., Jenkins, A., & Simpson, G. L. (2005). Reconstructing pre-acidification pH for an acidified Scottish loch: a comparison of paleolimnological and modelling approaches. Environmental Pollution, 137(1), 135–149.CrossRefGoogle Scholar
  3. Borken, W., Ahrens, B., Schulz, C., & Zimmermann, L. (2011). Site-to-site variability and temporal trends of DOC concentrations and fluxes in temperate forest soils. Global Change Biology, 17(7), 2428–2443.CrossRefGoogle Scholar
  4. Bragazza, L., Freeman, C., Jones, T., Rydin, H., Limpens, J., Fenner, N., et al. (2006). Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 19386–19389.CrossRefGoogle Scholar
  5. Buzek, F., Hruška, J., & Krám, P. (1995). Three component model of runoff generation, Lysina catchment, Czech Republic. Water, Air, and Soil Pollution, 79, 391–408.CrossRefGoogle Scholar
  6. Clark, J. M., van der Heijden, G. M. F., Palmer, S. M., Chapman, P. J., & Bottrell, S. H. (2011). Variation in the sensitivity of DOC release between different organic soils following H2SO4 and sea-salt additions. European Journal of Soil Science, 62(2), 267–284.CrossRefGoogle Scholar
  7. Cosby, B. J., Hornberger, G. M., Galloway, J. N., & Wright, R. F. (1985). Modeling the effects of acid deposition: assessment of a lumped parameter model of soilwater and streamwater chemistry. Water Resources Research, 21, 51–63.CrossRefGoogle Scholar
  8. Cosby, B. J., Ferrier, R. C., Jenkins, A., & Wright, R. F. (2001). Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrology and Earth System Sciences, 5, 499–518.CrossRefGoogle Scholar
  9. Cunningham, L., Bishop, K., Mettavainio, E., & Rosen, P. (2011). Paleoecological evidence of major declines in total organic carbon concentrations since the nineteenth century in four nemoboreal lakes. Journal of Paleolimnology, 45(4), 507–518.CrossRefGoogle Scholar
  10. Driscoll, C. T. (1984). A procedure for the fractionation of aqueous aluminum in dilute acidic waters. International Journal of Analytical Chemistry, 16, 267–283.CrossRefGoogle Scholar
  11. Driscoll, C. T., Lehtinen, M. D., & Sullivan, T. J. (1994). Modeling the acid–base chemistry of organic solutes in Adirondack, New York, lakes. Water Resources Research, 30(2), 297–306.CrossRefGoogle Scholar
  12. Eimers, C. M., Watmough, S. A., Buttle, J. M., & Dillon, P. J. (2008). Examination of the potential relationship between droughts, sulphate and dissolved organic carbon at a wetland-draining stream. Global Change Biology, 14, 938–948.CrossRefGoogle Scholar
  13. Ekström, S. M., Kritzberg, E. S., Kleja, D. B., Larsson, N., Nilsson, P. A., Graneli, W., et al. (2011). Effect of acid deposition on quantity and quality of dissolved organic matter in soil-water. Environmental Science & Technology, 45(11), 4733–4739.CrossRefGoogle Scholar
  14. Erlandsson, M., Buffam, I., Fölster, J., Laudon, H., Temnerud, J., Weyhenmeyer, G. A., et al. (2008). Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Global Change Biology, 14, 1191–1198.CrossRefGoogle Scholar
  15. Erlandsson, M., Cory, N., Fölster, J., Köhler, S., Laudon, H., Weyhenmeyer, G. A., et al. (2011). Increasing dissolved organic carbon redefines the extent of surface water acidification and helps resolve a classic controversy. Bioscience, 61, 614–618.CrossRefGoogle Scholar
  16. Evans, C. D., Monteith, D. T., & Cooper, D. M. (2005). Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environmental Pollution, 137(1), 55–71.CrossRefGoogle Scholar
  17. Evans, C. D., Goodale, C., Caporn, S., Dise, N., Emmett, B., Fernandez, I., et al. (2008). Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments. Biogeochemistry, 91(1), 13–35.CrossRefGoogle Scholar
  18. Evans, C. D., Jones, T. G., Burden, A., Ostle, N., Zielinski, P., Cooper, M. D. A., et al. (2012). Acidity controls on dissolved organic carbon mobility in organic soils. Global Change Biology, 18(11), 3317–3331.CrossRefGoogle Scholar
  19. Fölster, J., Andrén, C., Bishop, K., Buffam, I., Cory, N., Goedkoop, W., et al. (2007). A novel environmental quality criterion for acidification in Swedish lakes—an application of studies on the relationship between biota and water chemistry. Water, Air, and Soil Pollution: Focus, 7, 331–338.CrossRefGoogle Scholar
  20. Gunnarsson, U. (2005). Global patterns of Sphagnum productivity. Journal of Bryology, 27, 269–279.CrossRefGoogle Scholar
  21. Holmberg, M., Vuorenmaa, J., Posch, M., Forsius, M., Lundin, L., Kleemola, S., et al. (2013). Relationship between critical load exceedances and empirical impact indicators at Integrated Monitoring sites across Europe. Ecological Indicators, 24, 256–265.CrossRefGoogle Scholar
  22. Hruška, J., & Krám, P. (1994). Aluminium chemistry of the root zone of forest soil affected by acid deposition at the Lysina catchment, Czech Republic. Ecological Engineering, 3, 5–16.CrossRefGoogle Scholar
  23. Hruška, J., & Krám, P. (2003). Modelling long-term changes in stream water and soil chemistry in catchments with contrasting vulnerability to acidification (Lysina and Pluhuv Bor, Czech Republic). Hydrology and Earth System Sciences, 7(4), 525–539.CrossRefGoogle Scholar
  24. Hruška, J., Köhler, S., Laudon, H., & Bishop, K. (2003). Is a universal model of organic acidity possible: comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones. Environmental Science and Technology, 37, 1726–1730.CrossRefGoogle Scholar
  25. Hruška, J., Krám, P., McDowell, W. H., & Oulehle, F. (2009). Increased dissolved organic carbon (DOC) in central European streams is driven by reductions in ionic strength rather than climate change or decreasing acidity. Environmental Science & Technology, 43(12), 4320–4326.CrossRefGoogle Scholar
  26. Kopáček, J., & Veselý, J. (2005). Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmospheric Environment, 39, 2179–2188.CrossRefGoogle Scholar
  27. Kopáček, J., Hejzlar, J., Káňa, J., Norton, S. A., Porcal, P., & Turek, J. (2009). Trends in aluminium export from a mountainous area to surface waters, from deglaciation to the recent: effects of vegetation and soil development, atmospheric acidification, and nitrogen-saturation. Journal of Inorganic Biochemistry, 103(11), 1439–1448.CrossRefGoogle Scholar
  28. Krám, P., Hruška, J., Driscoll, C. T., & Johnson, C. E. (1995). Biogeochemistry of aluminum in a forest catchment in the Czech Republic impacted by atmospheric inputs of strong acids. Water, Air, and Soil Pollution, 85, 1831–1836.CrossRefGoogle Scholar
  29. Krám, P., Hruška, J., & Shanley, J. B. (2012). Streamwater chemistry in three contrasting monolithologic catchments. Applied Geochemistry, 27, 1854–1863.CrossRefGoogle Scholar
  30. Löfgren, S., & Zetterberg, T. (2011). Decreased DOC concentrations in soil water in forested areas in southern Sweden during 1987–2008. Science of the Total Environment, 409(10), 1916–1926.CrossRefGoogle Scholar
  31. Löfgren, S., Gustafsson, J. P., & Bringmark, L. (2010). Decreasing DOC trends in soil solution along the hillslopes at two IM sites in southern Sweden—geochemical modeling of organic matter solubility during acidification recovery. Science of the Total Environment, 409(1), 201–210.CrossRefGoogle Scholar
  32. Moldan, F., Hruška, J., Evans, C. D., & Hauhs, M. (2012). Experimental simulation of the effects of extreme climatic events on major ions, acidity and dissolved organic carbon leaching from a forested catchment, Gårdsjön, Sweden. Biogeochemistry, 107(1–3), 455–469.CrossRefGoogle Scholar
  33. Moldan, F., Cosby, B. J., & Wright, R. F. (2013). Modeling past and future acidification of Swedish lakes. Ambio, 42, 577–586.CrossRefGoogle Scholar
  34. Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Høgåsen, T., et al. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, 537–540.CrossRefGoogle Scholar
  35. Oulehle, F., McDowell, W. H., Aitkenhead-Peterson, J. A., Krám, P., Hruška, J., Navrátil, T., et al. (2008). Long-term trends in stream nitrate concentrations and losses across watersheds undergoing recovery from acidification in the Czech Republic. Ecosystems, 11(3), 410–425.CrossRefGoogle Scholar
  36. Oulehle, F., Cosby, B. J., Wright, R. F., Hruška, J., Kopácek, J., Krám, P., et al. (2012). Modelling soil nitrogen: the MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics. Environmental Pollution, 165, 158–166.CrossRefGoogle Scholar
  37. Pärn, J., & Mander, U. (2012). Increased organic carbon concentrations in Estonian rivers in the period 1992–2007 as affected by deepening droughts. Biogeochemistry, 108, 351–358.CrossRefGoogle Scholar
  38. SanClements, S. D., Oelsner, G. P., McKnight, D. M., Stoddard, J. L., & Nelson, S. J. (2012). New insights into source of decadal increases of dissolved organic matter in acid-sensitive lakes of the Northern United States. Environmental Science & Technology, 46, 3212–3219.CrossRefGoogle Scholar
  39. Sarkkola, S., Koivusalo, H., Laurén, A., Kortelainen, P., Mattsson, T., Palvaiainen, M., et al. (2009). Trends in hydrometeorological conditions and streamwater organic carbon in boreal forested catchments. Science of the Total Environment, 408, 92–101.CrossRefGoogle Scholar
  40. Schecher, W. D., & Driscoll, C. T. (1987). An evaluation of uncertainty associated with aluminum equilibrium calculations. Water Resources Research, 23, 525–534.CrossRefGoogle Scholar
  41. Schöpp, W., Posch, M., Mylona, S., & Johansson, M. (2003). Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrology and Earth System Sciences, 7, 436–446.CrossRefGoogle Scholar
  42. SEPA. (2010). Status, potential and quality requirements for lakes, watercourses, coastal and transitional waters. In: Handbook 2007:4. 107 p, Stockholm, Swedish Environmental Protection Agency.Google Scholar
  43. Stutter, M. I., Lumsdon, D. G., & Rowland, A. P. (2011). Three representative UK moorland soils show differences in decadal release of dissolved organic carbon in response to environmental change. Biogeosciences, 8(12), 3661–3675.CrossRefGoogle Scholar
  44. Tipping, E., Rowe, E. C., Evans, C. D., Mills, R. T. E., Emmett, B. A., Chaplow, J. S., et al. (2012). N14C: A plant-soil nitrogen and carbon cycling model to simulate terrestrial ecosystem responses to atmospheric nitrogen deposition. Ecological Modelling, 247, 11–26.CrossRefGoogle Scholar
  45. Wright, R. F., & Cosby, B. J. (2003). Future recovery of acidified lakes in southern Norway predicted by the MAGIC model. Hydrology and Earth System Sciences, 7, 467–485.CrossRefGoogle Scholar
  46. Zhang, J., Hudson, J., Neal, R., Sereda, J., Clair, T., Turner, M., et al. (2010). Long-term patterns of dissolved organic carbon in lakes across eastern Canada: evidence of a pronounced climate effect. Limnology and Oceanography, 55(1), 30–42.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jakub Hruška
    • 1
    • 2
    Email author
  • Pavel Krám
    • 1
    • 2
  • Filip Moldan
    • 3
    • 2
  • Filip Oulehle
    • 1
    • 2
  • Christopher D. Evans
    • 4
  • Richard F. Wright
    • 5
  • Jiří Kopáček
    • 6
  • Bernard J. Cosby
    • 7
    • 4
  1. 1.Czech Geological SurveyPrague 1Czech Republic
  2. 2.Global Change Research CenterAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  3. 3.IVL Swedish Environmental Research InstituteGothenburgSweden
  4. 4.Center for Ecology and HydrologyBangorUK
  5. 5.Norwegian Institute for Water ResearchOsloNorway
  6. 6.Biological Center, Hydrobiological InstituteAcademy of Sciences of the Czech RepublicČeské BudějoviceCzech Republic
  7. 7.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations