Skip to main content
Log in

Comparing the Effects of Aquatic Stressors on Model Temperate Freshwater Aquatic Communities

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Identifying the relative importance of stressors is critical for effectively managing and conserving freshwater aquatic ecosystems. However, variability in natural ecosystems and the potential for multiple stressors make understanding the effects of stressors challenging in the field. To address these challenges, we assessed four common stressors in the northeastern USA including acidification (pH), climate change (water temperature), salinization (Na and Cl), and nutrient addition using laboratory mesocosms. Each stressor was evaluated independently, with ten mesocosms assigned across a gradient of concentrations for each stressor (total N = 40). We then monitored the effects of the stressors on a model community consisting of periphyton, zooplankton, Northern watermilfoil (Myriophyllum sibericum), American ribbed fluke snail (Pseudosuccinea columella), and larval American bullfrogs (Lithobates catesbeianus). Aquatic stressors varied in the strength of their effects on community structure: Nutrient addition was the least influential stressor, with no significant effects. Acidification influenced periphyton biomass, but not higher trophic levels. Water temperature influenced primary productivity and survival of amphibian larvae, but not intermediate trophic levels. Finally, road salt led to decreases in productivity for all trophic levels included in our model systems. Our results support the findings of prior research, although the effects of acidification and nutrient addition were less pronounced in our study. Importantly, we found that road salt had the most far-reaching effects on a model aquatic community. Given that road salt is the most easily managed of the stressors we compared, our results indicate that improving the condition of freshwater aquatic ecosystems in the northeastern USA may be a feasible objective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, S. M. (2003). Establishing causality between environmental stressors and effects on aquatic ecosystems. Human and Ecological Risk Assessment, 9(1), 17–17.

    Article  CAS  Google Scholar 

  • Beier, C. M., Signell, S. A., Luttmann, A., & DeGaetano, A. T. (2012). High resolution climate change mapping with gridded historical climate products. Landscape Ecology, 27, 327–342.

    Article  Google Scholar 

  • Boone, M. D., & James, S. M. (2003). Interactions of an insecticide, herbicide, and natural stressors in amphibian community mesocosms. Ecological Applications, 13(3), 829–841.

    Article  Google Scholar 

  • Brattstrom, B. H. (1963). A preliminary review of the thermal requirements of amphibians. Ecological Applications, 44, 238–255.

    Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2002). Model-selection and multi-model inference: A practical information-theoretic approach. 2nd ed. New York: Springer, p. 488.

  • Camargo, J. A., & Alonso, A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32(6), 831–849.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., & Kitchell, J. F. (1984). Plankton community structure and limnetic primary productivity. American Naturalist, 124, 159–172.

    Article  Google Scholar 

  • Carpenter, S. R., Kitchell, J. F., & Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. Bioscience, 35, 634–639.

    Article  Google Scholar 

  • Carpenter, S. R., Fisher, S. G., Grimm, N. B., & Kitchell, J. F. (1992). Global change and freshwater ecosystems. Annual Review of Ecology and Systematics, 1992, 119–139.

    Article  Google Scholar 

  • Carpenter, S. R., Stanley, E. H., & Vander Zanden, M. J. (2011). State of the world's freshwater ecosystems: physical, chemical, and biological changes. Annual Review of Environmental Resources, 36, 75–99.

    Article  Google Scholar 

  • Chase, J. M., & Knight, T. M. (2006). Effects of eutrophication and snails on Eurasian watermilfoil (Myriophyllum spicatum). Biological Invasions, 8, 1643–1649.

    Article  Google Scholar 

  • Conley, D. J. (2000). Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia, 410, 87–96.

    Article  Google Scholar 

  • Core Team, R. (2012). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Correll, D. L. (1998). The role of phosphorus in the eutrophication of receiving waters: a review. Journal of Environmental Quality, 27, 261–266.

    Article  CAS  Google Scholar 

  • Corsi, S. R., Graczyk, D. J., Geis, S. W., Booth, N. L., & Richards, K. D. (2010). A fresh look at road salt: aquatic toxicity and water-quality impacts on local, regional, and national scales. Environmental Science & Technology, 44(19), 7376–7382.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eagar, C., et al. (2001). Acidic deposition in the Northeastern United States: sources and inputs, ecosystem effects, and management strategies. Bioscience, 51, 180–198.

    Article  Google Scholar 

  • Fleeger, J. W., Carman, K. R., & Nisbet, R. M. (2003). Indirect effects of contaminants in aquatic ecosystems. Science of the Total Environment, 317(1–3), 207–233.

    Article  CAS  Google Scholar 

  • Forman, R. T. T., & Alexander, L. E. (1998). Roads and their major ecological effects. Annual Review of Ecology and Systematics, 29, 207–231.

    Article  Google Scholar 

  • Freda, J. (1986). The influence of acidic pond water on amphibians: a review. Water, Air, & Soil Pollution, 30, 439–450.

    Article  CAS  Google Scholar 

  • Friberg, N., Christensen, J. B., Olafsson, J. S., Gislason, G. M., Larsen, S. E., & Lauridsen, T. L. (2009). Relationship between structure and function in streams contrasting in temperature: possible impacts of climate change on running water ecosystems. Freshwater Biology, 54, 2051–2206.

    Article  CAS  Google Scholar 

  • Haines, T. A., & Baker, J. P. (1986). Evidence of fish population responses to acidification in the Eastern United States. Water, Air, & Soil Pollution, 31, 605–629.

    Article  CAS  Google Scholar 

  • Haller, W. T., Sutton, D. L., & Barlowe, W. C. (1974). Effects of salinity on growth of several aquatic macrophytes. Ecology, 55, 891–894.

    Article  Google Scholar 

  • Hansson, L. (1992). Factors regulating periphytic algal biomass. Limnology and Oceanography, 37, 322–328.

    Article  CAS  Google Scholar 

  • Heugens, E. H. W., Hendriks, A. J., Dekker, T., van Straalen, N. M., & Admiraal, W. (2001). A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Critical Reviews in Toxicology, 31(3), 247–284.

    Article  CAS  Google Scholar 

  • Hogg, I. D., Williams, D. D., Eadie, J. M., & Butt, S. A. (1995). The consequences of global warming for stream invertebrates: a field simulation. Journal of Thermal Biology, 20, 199–206.

    Article  Google Scholar 

  • Johannsson, O. E., & O'Gorman, R. (1991). Roles of predation, food, and temperature in structuring the epilimnetic zooplankton populations in Lake Ontario. Transactions of the American Fisheries Society, 120, 193–208.

    Article  Google Scholar 

  • Johnson, P. T. J., Chase, J. M., Dosch, K. L., Hartson, R. B., Gross, J. A., Larson, D. J., et al. (2007). Aquatic eutrophication promotes pathogenic infection in amphibians. Proceedings of the National Academy of Sciences of the United States of America, 104, 15781–15786.

    Article  CAS  Google Scholar 

  • Karraker, N. E. (2007). Are embryonic and larval green frogs (Rana clamitans) insensitive to road deicing salt? Herpetological Conservation and Biology, 2, 35–41.

    Google Scholar 

  • Karraker, N. E., Gibbs, J. P., & Vonesh, J. R. (2008). Impacts of road deicing salt on the demography of vernal pool-breeding amphibians. Ecological Applications, 18, 724–734.

    Article  Google Scholar 

  • Kelting, D.L., & Laxson, C.L. (2010). Review of effects and costs of road de-icing with recommendations for winter road management in the Adirondack Park. Paul Smiths College Adirondack Watershed Institute Report No. AWI2010-01

  • Kelting, D. L., Laxson, C. L., & Yerger, E. C. (2012). Regional analysis of the effect of paved roads on sodium chloride in lakes. Water Research, 46, 2749–2758.

    Article  CAS  Google Scholar 

  • Kwiatkowski, R. E., & Roff, J. C. (1976). Effects of acidity on the phytoplankton and primary productivity of selected northern Ontario lakes. Canadian Journal of Botany, 54, 2546–2561.

    Article  CAS  Google Scholar 

  • Lawton, J. H. (1995). Ecological experiments in model systems. Science, 269, 328–331.

    Article  CAS  Google Scholar 

  • Leuven, R. S. E. W., den Hartog, C., Christiaans, M. M. C., & Heijligers, W. H. C. (1986). Effects of water acidification on the distribution pattern and the reproductive success of amphibians. Experientia, 42, 495–503.

    Article  CAS  Google Scholar 

  • Mallory, M. A., & Richardson, J. S. (2005). Complex interactions of light, nutrients, and consumer density in a stream periphyton-grazer (tailed frog tadpoles) system. Journal of Animal Ecology 74, 1020–1028.

  • McKee, D., Atkinson, D., Collings, S. E., Eaton, J. W., Harvey, I., Heyes, T., et al. (2002). Macro-zooplankter responses to simulated climate warming in experimental freshwater microcosms. Freshwater Biology, 47, 1557–1570.

    Article  Google Scholar 

  • Meerhoff, M., Clemente, J. M., De Mello, F. T., Iglesias, C., Pedersen, A. R., & Jeppesen, E. (2007). Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology, 13, 1888–1897.

    Article  Google Scholar 

  • Meyer, J. L., Sale, M. J., Mulholland, P. J., & Poff, N. L. (1999). Impacts of climate change on aquatic ecosystem functioning and health. Journal of the American Water Resources Association, 35, 1373–1386.

    Article  Google Scholar 

  • Nyström, P., Hansson, J., Månsson, J., Sundstedt, M., Reslow, C., & Broström, A. (2007). A documented amphibian decline over 40 years: possible causes and implications for species recovery. Biological Conservation, 138, 399–411.

    Article  Google Scholar 

  • Oškinis, V., & Kasperovičius, T. (2005). Impact of road maintenance salts on water ecosystems according to diatom flora investigation. Journal of Environmental Engineering and Landscape Management, XIII, 51–55.

    Google Scholar 

  • Patrick, D. A., Boudreau, N., Bozic, N., Carpenter, G. S., Langdon, D. M., LeMay, S. R., et al. (2012). Effects of climate change on late-season growth and survival of native and non-native species of watermilfoil (Myriophyllum spp.): implications for invasive potential and ecosystem change. Aquatic Botany, 103, 83–88.

    Article  Google Scholar 

  • Quinlan, R., Hall, R. I., Paterson, A. M., Cumming, B. F., & Smol, J. P. (2008). Long-term assessments of ecological effects of anthropogenic stressors on aquatic ecosystems from paleoecological analyses: challenges to perspectives of lake management. Canadian Journal of Fisheries and Aquatic Sciences, 65(5), 933–944.

    Article  Google Scholar 

  • Rabalais, N. N. (2002). Nitrogen in aquatic ecosystems. AMBIO: A Journal of the Human Environment, 31(2), 102–112.

    Google Scholar 

  • Rapport, D. J., Regier, H. A., & Hutchinson, T. C. (1985). Ecosystem behavior under stress. American Naturalist, 125(5), 617–640.

    Article  Google Scholar 

  • Richburg, J. A., Patterson, W. A., III, & Lowenstein, F. (2001). Effects of road salt and Phragmites australis invasion on the vegetation of a western Massachusetts calcareous lake-basin fen. Wetlands, 21, 247–255.

    Article  Google Scholar 

  • Sanzo, D., & Hecnar, S. J. (2006). Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environmental Pollution, 140, 247–256.

    Article  CAS  Google Scholar 

  • Sarma, S. S. S., Nandini, S., Morales-Ventura, J., Delgado-Martinez, I., & González-Valverde, L. (2006). Effects of NaCl salinity of the population dynamics of freshwater zooplankton (rotifers and cladocerans). Aquatic Ecology, 40, 349–360.

    Article  CAS  Google Scholar 

  • Schindler, D. W. (1988). Effects of acid rain on freshwater ecosystems. Science, 239, 149–157.

    Article  CAS  Google Scholar 

  • Schneider, C. A., Rasband, W. D., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675.

    Article  CAS  Google Scholar 

  • Sickle, J. V., Stoddard, J. L., Paulsen, S. G., & Olsen, A. R. (2006). Using relative risk to compare the effects of aquatic stressors at a regional scale. Environmental Management, 38(6), 1020–1030.

    Article  Google Scholar 

  • Silver, P., Rupprecht, S. M., & Stauffer, M. F. (2009). Temperature-dependent effects of road deicing salt on Chironomid larvae. Wetlands, 29(3), 942–951.

    Article  Google Scholar 

  • Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10, 126–139.

    Article  CAS  Google Scholar 

  • Smith, C. S., & Barko, J. W. (1990). Ecology of Eurasian watermilfoil. Journal of Aquatic Plant Management, 28, 55–64.

    Google Scholar 

  • Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100, 179–196.

    Article  CAS  Google Scholar 

  • Smith-Gill, S. J., & Berven, K. A. (1979). Predicting amphibian metamorphosis. American Naturalist, 113, 563–585.

    Article  Google Scholar 

  • Spivak, A. C., Vanni, M. J., & Mette, E. M. (2011). Moving on up: can results from simple aquatic mesocosm experiments be applied across broad spatial scales? Freshwater Biology, 56, 279–291.

    Article  Google Scholar 

  • Straile, D., & Geller, W. (1998). Crustacean zooplankton in Lake Constance from 1920 to 1995: response to eutrophication and re-oligotrophication. Advances in Limnology, 53, 255–274.

    Google Scholar 

  • Trombulak, S. C., & Frissell, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14, 18–30.

    Article  Google Scholar 

  • Van Meter, R. J., Swan, C. M., Leips, J., & Snodgrass, J. W. (2011a). Road salt stress induces novel food web structure and interactions. Wetlands, 31, 843–851.

    Article  Google Scholar 

  • Van Meter, R. J., Swan, C. M., & Snodgrass, J. W. (2011b). Salinization alters ecosystem structure in urban stormwater retention ponds. Urban Ecosystems, 14, 723–736.

    Article  Google Scholar 

  • Vinebooke, R. D., Cottingham, K. L., Norberg, J., Scheffer, M., Dodson, S. I., Maberly, S. C., et al. (2004). Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos, 104, 451–457.

    Article  Google Scholar 

  • Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., et al. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737–750.

    Google Scholar 

  • Vorosmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., et al. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561.

    Article  CAS  Google Scholar 

  • Wilcox, D. A. (1986). The effects of deicing salts on vegetation in Pinhook Bog, Indiana. Canadian Journal of Botany, 64, 865–874.

    Article  CAS  Google Scholar 

  • Winder, M., & Schindler, D. E. (2004). Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology, 85(8), 2100–2106.

    Article  Google Scholar 

  • Woodward, G., Perkins, D. M., & Brown, L. E. (2010). Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B, 365, 2093–2106.

    Article  Google Scholar 

  • Wrona, F. J., Prowse, T. D., Reist, J. D., Hobbie, J. E., Lévesque, L. M. J., & Vincent, W. F. (2006). Climate change effects on aquatic biota, ecosystem structure and function. AMBIO: A Journal of the Human Environment, 35(7), 359–369.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Jorie Favreau for her support of this research as well as all of the Paul Smith’s College students who helped with establishing our experiments. Funding support for undergraduate students was provided by a National Science Foundation S-STEM grant #1154455. Laboratory instrumentation was supported by a National Science Foundation major equipment grant #0722927.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Patrick.

Appendices

Appendices

Table 6 Water quality data collected by the Adirondack Watershed Institute from 176 water bodies in the Adirondack region of upstate NY, USA, from 2003 to 2013
Table 7 Initial concentrations (ppb) of macro- and micronutrients in nutrient addition treatment mesocosms manipulated via addition of Hoagland’s solution. Treatment levels (replicates) were designed to encompass and expand beyond levels of macronutrients found in lacustrine wetlands in the focal region from low (replicate 1) to high (replicate 10) concentrations. The base concentration of initial nutrients used as a standard across the three additional stressors we evaluated (acidification, road salt, and climate change) is shown by level 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalinsky, S.A., Lolya, L.M., Maguder, J.L. et al. Comparing the Effects of Aquatic Stressors on Model Temperate Freshwater Aquatic Communities. Water Air Soil Pollut 225, 2007 (2014). https://doi.org/10.1007/s11270-014-2007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2007-9

Keywords

Navigation