Heather Moorland Vegetation and Air Pollution: A Comparison and Synthesis of Three National Gradient Studies

  • Richard J. PayneEmail author
  • Simon J. M. Caporn
  • Christopher D. Field
  • Jacky A. Carroll
  • Jill L. Edmondson
  • Andrea Britton
  • Nancy B. Dise


Large-scale spatial gradient studies are increasingly used to understand the impacts of air pollution and devise appropriate conservation and policy responses, but how consistent are the conclusions we draw from these surveys? Here, we address this question by comparing three independent gradient studies from the same habitat, UK heather moorlands. We harmonise and re-analyse vegetation data from these surveys in relation to cumulative nitrogen deposition, sulphur deposition and other potential drivers and use these results to assess the possible impacts of air pollution in this habitat. Air pollution variables explain more variance in species richness and composition than other variables in the vast majority of analyses. Untangling the relative contribution of nitrogen and (legacy) sulphur deposition is difficult due to strong correlation, but it is likely that nitrogen deposition is currently the dominant driver of change. There is consistency in the negative correlation between species richness and nitrogen deposition, but some variability in the form of this relationship due to small sample sizes. Across surveys there is a high degree of consistency in species identified as either positively or negatively correlated to nitrogen deposition, and no evidence for systematic differences. We conclude that relatively small surveys across wide gradients can provide useful information on potential drivers of diversity, as well as identify sensitive and tolerant species. Our results strongly suggest that nitrogen deposition has a severe and widespread impact on the biodiversity of British heather moorlands and is causing changes in plant communities, including promoting the spread of at least one invasive species.


Pollution Heathland Bryophytes Ordination Nitrogen deposition 



RJP, NBD and SJMC were supported by the UK Natural Environment Research Council through the European Union FP6 BiodivERsA (ERA-NET) project PEATBOG. Data collection was supported by DEFRA through the UKREATE and Terrestrial Umbrella programmes.

Supplementary material

11270_2014_1998_MOESM1_ESM.pdf (142 kb)
Fig. S1 (PDF 141 kb)
11270_2014_1998_MOESM2_ESM.pdf (184 kb)
Fig. S2 (PDF 184 kb)
11270_2014_1998_MOESM3_ESM.pdf (23 kb)
Table S1 (PDF 22 kb)
11270_2014_1998_MOESM4_ESM.pdf (19 kb)
Table S2 (PDF 19 kb)
11270_2014_1998_MOESM5_ESM.pdf (21 kb)
Table S3 (PDF 20 kb)


  1. Aberdeen, J. C. (1958). The effect of quadrat size, plant size and plant distribution on frequency estimates in plant ecology. Australian Journal of Botany, 6, 47–58.CrossRefGoogle Scholar
  2. Aude, E., & Ejrnæs, R. (2005). Bryophyte colonisation in experimental microcosms: The role of nutrients, defoliation and vascular vegetation. Oikos, 109, 323–330.CrossRefGoogle Scholar
  3. Bates, J. W. (1994). Responses of the mosses Brachythecium rutabulum and Pseudoscleropodium purum to a mineral nutrient pulse. Functional Ecology, 8, 686–693.CrossRefGoogle Scholar
  4. Bates, J. W. (1997). Effects of intermittent desiccation on nutrient economy and growth of two ecologically contrasted mosses. Annals of Botany, 79, 299–309.CrossRefGoogle Scholar
  5. Bobbink, R., Hornung, M., & Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717–738.CrossRefGoogle Scholar
  6. Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30–59.CrossRefGoogle Scholar
  7. Bortolus, A. (2008). Error cascades in the biological sciences: The unwanted consequences of using bad taxonomy in ecology. Ambio, 37, 114–118.CrossRefGoogle Scholar
  8. Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27, 325–349.CrossRefGoogle Scholar
  9. Caporn, S.J.M., Carroll, J.A., Dise, N.B., Payne, R.J. (2014) Impacts and indicators of nitrogen deposition in moorlands. Ecological Indicators, 45, 227–234.Google Scholar
  10. Caporn, S. J. M., Song, W., Read, D. J., & Lee, J. A. (1995). The effect of repeated nitrogen fertilization on mycorrhizal infection in heather [Calluna vulgaris (L.) Hull]. New Phytologist, 129, 605–609.CrossRefGoogle Scholar
  11. Caporn, S.J.M. Edmondson, J., Carroll, J.A., Pilkington, M., & Ray N. (2007). Task 4 — Long-term impacts of enhanced and reduced nitrogen deposition on semi-natural vegetation, In UKREATE (Eds.), Terrestrial umbrella – effects of eutrophication and acidification on terrestrial ecosystems final report (pp. 33–44). Centre for Ecology and Hydrology.Google Scholar
  12. Caporn, S.J.M., Field, C., Payne, R., Dise, N., Britton, A., Emmett, B., et al. (2011). Assessing the effects of small increments of atmospheric nitrogen deposition (above the critical load) on semi-natural habitats of conservation importance. Contract report to Natural England, SN218.Google Scholar
  13. Carroll, J. A., Caporn, S. J. M., Cawley, L., Read, D. J., & Lee, J. A. (1999). The effect of increased deposition of atmospheric nitrogen on Calluna vulgaris in upland Britain. New Phytologist, 141, 423–431.CrossRefGoogle Scholar
  14. Cunha, A., Power S.A., Ashmore, M.R., Green, P.R.S., Haworth, B.J., & Bobbink, R. (2002). Whole ecosystem nitrogen manipulation: An updated review, JNCC Report No. 331. Peterborough: Joint Nature Conservancy Council.Google Scholar
  15. De Schrijver, A., De Frenne, P., Ampoorter, E., Van Nevel, L., Demey, A., Wuyts, K., & Verheyen, K. (2011). Cumulative nitrogen input drives species loss in terrestrial ecosystems. Global Ecology and Biogeography, 20, 803–816.Google Scholar
  16. Dentener, F., et al. (2006). Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 20, GB4003.CrossRefGoogle Scholar
  17. Diekmann, M., Jandt, U., Alard, D., Bleeker, A., Corcket, E., Gowing, D. J. G., et al. (2014). Long-term changes in calcareous grassland vegetation in North-western Germany—no decline in species richness, but a shift in species composition. Biological Conservation, 172, 170–179.CrossRefGoogle Scholar
  18. Dirkse, G. M., & Martakis, G. F. P. (1992). Effects of fertilizer on bryophytes in Swedish experiments on forest fertilization. Biological Conservation, 59, 155–161.CrossRefGoogle Scholar
  19. Duprè, C., Stevens, C. J., Ranke, T., Bleeker, A., Peppler-Lisbach, C., Gowing, D. J., et al. (2010). Changes in species richness and composition in European acidic grasslands over the past 70 years: The contribution of cumulative atmospheric nitrogen deposition. Global Change Biology, 16, 344–357.CrossRefGoogle Scholar
  20. Edmondson, J. L., Carroll, J. A., Price, E. A. C., & Caporn, S. J. M. (2010). Bio-indicators of nitrogen pollution in heather moorland. Science of the Total Environment, 480, 6202–6209.CrossRefGoogle Scholar
  21. Field, C., Dise, N.B., Payne, R.J., Britton, A.J., Emmett, B.A., Helliwell, R.C., Hughes, S., Jones, M.L., Lees, S., Leake, J.R., Leith, I.D., Phoeniz, G.K., Power, S.A., Sheppard, L.J., Southon, G.E., Stevens, C.J., Caporn, S.J.M. (2014) The role of nitrogen deposition in widespread plant community change across semi-natural habitats. Ecosystems. doi: 10.1007/s10021-014-9765-5.
  22. Fowler, D., Muller, J. B. A., & Sheppard, L. J. (2004a). The GaNE programme in a global perspective. Water, Air and Soil Pollution: Focus, 4, 3–8.CrossRefGoogle Scholar
  23. Fowler, D., O’Donoghue, M., Muller, J. B. A., Smith, R. I., Dragosits, U., Skiba, U., et al. (2004b). A chronology of nitrogen deposition in the UK between 1900 and 2000. Water, Air and Soil Pollution: Focus, 4, 9–23.CrossRefGoogle Scholar
  24. Hallingbäck, T. (1992). The effect of air pollution on mosses in southern Sweden. Biological Conservation, 59, 163–170.CrossRefGoogle Scholar
  25. Hallbäcken, L., & Zhang, L.-Q. (1998). Effects of experimental acidification, nitrogen addition and liming on ground vegetation in a mature stand of Norway spruce (Picea abies (L.) Karst.) in SE Sweden. Forest Ecology and Management, 108, 201–213.CrossRefGoogle Scholar
  26. Haworth, B. J., Ashmore, M. R., & Headley, A. D. (2007). Effects of nitrogen deposition on bryophyte species composition of calcareous grasslands. Water, Air and Soil Pollution: Focus, 7, 111–117.CrossRefGoogle Scholar
  27. Helsper, H. P. G., Glenn-Lewin, D., & Werger, M. J. A. (1983). Early regeneration of Calluna heathland under various fertilization treatments. Oecologia, 58, 208–214.CrossRefGoogle Scholar
  28. Hollis, D., & Perry, M. (2004). A new set of long-term averages for the UK. Exeter: Met Office.Google Scholar
  29. Jones, M. L. M., Wallace, H. L., Norris, D., Brittain, S. A., Haria, S., Jones, R. E., et al. (2004). Changes in vegetation and soil characteristics in coastal sand dunes along a gradient of atmospheric nitrogen deposition. Plant Biology, 6, 598–605.CrossRefGoogle Scholar
  30. Kent, M., & Coker, P. (1992). Vegetation description and analysis: A practical approach. London: Belhaven.Google Scholar
  31. Lee, J. A. (1998). Unintentional experiments with terrestrial ecosystems: Ecological effects of sulphur and nitrogen pollutants. Journal of Ecology, 86, 1–12.CrossRefGoogle Scholar
  32. Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280.CrossRefGoogle Scholar
  33. Leith, I. D., Mitchell, R. J., Truscott, A. M., Cape, J. N., van Dijk, N., Smith, R. I., et al. (2008). The influence of nitrogen in stemflow and precipitation on epiphytic bryophytes, Isothecium myosuroides Brid., Dicranum scoparium Hewd. and Thuidium tamariscum (Hewd.) Sschimp of Atlantic oakwoods. Environmental Pollution, 155, 237–246.CrossRefGoogle Scholar
  34. Mäkipää, R. (1995). Sensitivity of forest-floor mosses in boreal forests to nitrogen and sulphur deposition. Water, Air, & Soil Pollution, 85, 1239–1244.CrossRefGoogle Scholar
  35. Mäkipää, R., & Heikkinen, J. (2003). Large-scale changes in abundance of terricolous bryophytes and macrolichens in Finland. Journal of Vegetation Science, 14, 497–508.CrossRefGoogle Scholar
  36. Maskell, L. C., Smart, S. M., Bullock, J. M., Thompson, K., & Stevens, C. J. (2010). Nitrogen deposition causes widespread loss of species richness in British habitats. Global Change Biology, 16, 671–679.CrossRefGoogle Scholar
  37. Payne, R. J., Thompson, A., Field, C., Standen, V., & Caporn, S. J. M. (2012). Impact of simulated nitrogen pollution on heathland microfauna, mesofauna and plants. European Journal of Soil Biology, 49, 73–79.CrossRefGoogle Scholar
  38. Payne, R. J., Stevens, C. J., Dise, N. B., Gowing, D. J., Pilkington, M. G., Phoenix, G. K., et al. (2011). Impacts of atmospheric pollution on the plant communities of British acid grasslands. Environmental Pollution, 159, 2602–2608.CrossRefGoogle Scholar
  39. Phoenix, G. K., Emmett, B. A., Britton, A. J., Caporn, S. J. M., Dise, N. B., Helliwell, R., et al. (2012). Impacts of atmospheric nitrogen deposition: Responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Global Change Biology, 18, 1197–1215.CrossRefGoogle Scholar
  40. Pilkington, M. G., Caporn, S. J. M., Carroll, J. A., Cresswell, N., Lee, J. A., Ashenden, T. W., et al. (2005). Effects of increased deposition of atmospheric nitrogen on an upland moor: Laching of N species and soil solution chemistry. Environmental Pollution, 135, 29–40.CrossRefGoogle Scholar
  41. Pitcairn, C. E. R., Fowler, D., & Grace, J. (1995). Deposition of fixed atmospheric nitrogen and foliar nitrogen content of bryophytes and Calluna vulgaris (L.) Hull. Environmental Pollution, 88, 193–205.CrossRefGoogle Scholar
  42. Pitcairn, C. E. R., Leith, I. D., Sheppard, L. J., Sutton, M. A., Fowler, D., Munro, R., et al. (1998). The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environmental Pollution, 102, 41–48.CrossRefGoogle Scholar
  43. Pitcairn, C.E.R., Leith, I., Sheppard, L.J., & Sutton, M.A. (2006a). Development of a nitrophobe/nitrophile classification for woodlands, grasslands and upland vegetation in Scotland (CEH: Project Report Number: C03066). NERC/Centre for Ecology and Hydrology.Google Scholar
  44. Pitcairn, C., Fowler, D., Leith, I., Sheppard, L., Tang, S., Sutton, M., et al. (2006b). Diagnostic indicators of elevated nitrogen deposition. Environmental Pollution, 144, 941–950.CrossRefGoogle Scholar
  45. Potter, J. A., Press, M. C., Callaghan, T. V., & Lee, J. A. (1995). Growth responses of Polytrichum commune and Hylocomium splendens to simulated environmental change in the sub-Arctic. New Phytologist, 131, 533–541.CrossRefGoogle Scholar
  46. Power, S. A., Ashmore, M. R., & Cousins, D. A. (1998). Impacts and fate of experimentally enhanced nitrogen deposition on a British lowland heath. Environmental Pollution, 102, 27–34.CrossRefGoogle Scholar
  47. Rodwell, J. S. (Ed.). (1991). British plant communities: Mires and heaths (Vol. 2). Cambridge: Cambridge University Press.Google Scholar
  48. RoTAP. (2012). Review of transboundary air Pollution. London: Department for Environment Food and Rural Affairs.Google Scholar
  49. Sala, O. E., et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.CrossRefGoogle Scholar
  50. Salemaa, M., Mäkipää, R., & Oksanen, J. (2008). Differences in the growth response of three bryophyte species to nitrogen. Environmental Pollution, 152, 82–91.CrossRefGoogle Scholar
  51. Smart, S. M., Ashmore, M. R., Hornung, M., Scott, W. A., Fowler, D. A., Dragosits, U., et al. (2004). Detecting the signal of atmospheric N deposition in recent national-scale vegetation change across Britain. Water, Air and Soil Pollution: Focus, 4, 269–278.CrossRefGoogle Scholar
  52. Smith, R. I., Fowler, D., Sutton, M. A., Flechard, C., & Coyle, M. (2000). Regional estimation of pollutant gas dry deposition in the UK: Model description, sensitivity analyses and outputs. Atmospheric Environment, 34, 3757–3777.CrossRefGoogle Scholar
  53. Solga, A., & Frahm, J.-P. (2006). Nitrogen accumulation by six pleurocarpous moss species and their suitability for monitoring nitrogen deposition. Journal of Bryology, 28, 46–52.CrossRefGoogle Scholar
  54. Southon, G. E., Field, C. D., Caporn, S. J. M., Britton, A. J., & Power, S. A. (2013). Nitrogen deposition reduces plant diversity and alters ecosystem functioning: Field-scale evidence from a nationwide survey of UK heathlands. PLoS One, 8, e59031.CrossRefGoogle Scholar
  55. Stevens, C. J., Dise, N. B., Mountford, J. O., & Gowing, D. J. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876–1879.CrossRefGoogle Scholar
  56. Stevens, C. J., Maskell, L. C., Smart, S. M., Caporn, S. J. M., Dise, N. B., & Gowing, D. J. (2009). Identifying indicators of atmospheric nitrogen deposition in acid grasslands. Biological Conservation, 142, 2069–2075.CrossRefGoogle Scholar
  57. Stevenson, A. C., & Thompson, D. B. A. (1993). Long-term changes in the extent of heather moorland in upland Britain and Ireland: Palaeoecological evidence for the importance of grazing. The Holocene, 3, 70–76.CrossRefGoogle Scholar
  58. Ter Braak, C., & Šmilauer, P. (1997–2004). CANOCO for Windows. Wageningen: Biometris-Plant Research.Google Scholar
  59. Thompson, D. B. A., MacDonald, A. J., Marsden, J. H., & Galbraith, C. A. (1995). Upland heather moorland in Great Britain: A review of international importance, vegetation change and some objectives for nature conservation. Biological Conservation, 71, 163–178.CrossRefGoogle Scholar
  60. Thimonier, A., Dupouey, J. L., & Timbal, J. (1992). Floristic changes in the herb-layer vegetation of a deciduous forest in the Lorraine Plain under the influence of atmospheric deposition. Forest Ecology and Management, 55, 149–167.CrossRefGoogle Scholar
  61. Van Dobben, H. F., ter Braak, C. J. F., & Dirkse, G. M. (1999). Undergrowth as a biomonitor for deposition of nitrogen and acidity in pine forest. Forest Ecology and Management, 114, 83–95.CrossRefGoogle Scholar
  62. Virtanen, R., Johnston, A. E., Crawley, M. J., & Edwards, G. R. (2000). Bryophyte biomass and species richness on the Park Grass Experiment, Rothamsted, UK. Plant Ecology, 151, 129–141.CrossRefGoogle Scholar
  63. Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3, 385–397.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Richard J. Payne
    • 1
    Email author
  • Simon J. M. Caporn
    • 2
  • Christopher D. Field
    • 2
  • Jacky A. Carroll
    • 3
  • Jill L. Edmondson
    • 4
  • Andrea Britton
    • 5
  • Nancy B. Dise
    • 6
  1. 1.Biological and Environmental ScienceUniversity of StirlingStirlingUK
  2. 2.School of Science and the EnvironmentManchester Metropolitan UniversityManchesterUK
  3. 3.Penny Anderson Associates LtdBuxtonUK
  4. 4.Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
  5. 5.The James Hutton InstituteAberdeenUK
  6. 6.Centre for Ecology and HydrologyMidlothianUK

Personalised recommendations