Skip to main content
Log in

Fast and High Amount of Uranyl Ion Uptake by p(Vinyl Phosphonic Acid) Microgels Prepared by UV Irradiation Technique

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Micrometer-size poly(vinyl phosphonic acid) (p(VPA)) hydrogel was synthesized by employing UV irradiation of an emulsion containing vinyl phosphonic acid (VPA) and crosslinker, prepared using lecithin as surfactant and gasoline as solvent. The p(VPA) microgels were employed in absorption of UO2 2+ ions from aqueous environments and have very high and fast absorption capacity. In about 20 min, 670 mg UO2 2+ ions were absorbed per gram of p(VPA) microgel from the prepared UO2 2+ ion solution, and the absorption capacity increased up to 900 mg at pH 6. Various parameters affecting UO2 2+ absorption characteristics of p(VPA) were investigated. It was found that the Langmuir isotherm fitted the absorption characteristics of p(VPA) better than the Freundlich isotherm. Moreover, magnetic ferrite can be prepared within p(VPA) and used as a magnetically responsive p(VPA) microgel composite for externally controlled absorption of UO2 2+ ions with little decrease in the absorption capacity of the p(VPA) microgel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akperov, E., Maharramov, A., & Akperov, O. (2010). Synthesis and uranyl ion adsorption study of cross-linked allyl propionate-maleic anhydride-styrene terpolymer. Turkish Journal of Chemistry, 34, 99–108.

    CAS  Google Scholar 

  • Anirudhan, T. S., Rijith, S., & Ratheesh, V. R. N. (2012). A highly efficient carboxyl-terminated hybrid adsorbent composite matrix for the adsorption of uranium(VI) and thorium(IV) from aqueous solutions and nuclear industry effluents. Desalination and Water Treatment, 38, 79–89.

    Article  CAS  Google Scholar 

  • Blake, R. C., Pavlov, A. R., Khosraviani, M., Ensley, H. E., Kiefer, G. E., Yu, H., et al. (2004). Novel monoclonal antibodies with specificity for chelated uranium(VI): Isolation and binding properties. Bioconjugate Chemistry, 15, 1125–1136.

    Article  CAS  Google Scholar 

  • Chi, F. T., Wang, X. L., Xiong, J., & Hu, S. (2013). Polyvinyl alcohol fibers with functional phosphonic acid group: synthesis and adsorption of uranyl (VI) ions in aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 296, 1331–1340.

    Article  CAS  Google Scholar 

  • Chisholmbrause, C., Conradson, S. D., Buscher, C. T., Eller, P. G., & Morris, D. E. (1994). Speciation of uranyl sorbed at multiple binding-sites on montmorillonite. Geochimica et Cosmochimica Acta, 58, 3625–3631.

    Article  CAS  Google Scholar 

  • Chisholm-Brause, C. J., Berg, J. M., Matzner, R. A., & Morris, D. E. (2001). Uranium(VI) sorption complexes on montmorillonite as a function of solution chemistry. Journal of Colloid and Interface Science, 233, 38–49.

    Article  CAS  Google Scholar 

  • Dudarko, O. A., Goncharik, V. P., Semenii, V. Y., & Zub, Y. L. (2008). Sorption of Hg2+, Nd3+, Dy3+, and UO22+ ions at polysiloxane xerogels functionalized with phosphonic acid derivatives. Protection of Metals, 44, 193–197.

    Article  CAS  Google Scholar 

  • Duff, M. C., & Amrhein, C. (1996). Uranium(VI) adsorption on goethite and soil in carbonate solutions. Soil Science Society of America Journal, 60, 1393–1400.

    Article  CAS  Google Scholar 

  • Ferrah, N., Abderrahim, O., Didi, M. A., & Villemin, D. (2011). Sorption efficiency of a new sorbent towards uranyl: phosphonic acid grafted Merrifield resin. Journal of Radioanalytical and Nuclear Chemistry, 289, 721–730.

    Article  CAS  Google Scholar 

  • Guerra, D. L., Leidens, V. L., Viana, R. R., & Airoldi, C. (2010). Application of Brazilian kaolinite clay as adsorbent to removal of U(VI) from aqueous solution: kinetic and thermodynamic of cation-basic interactions. Journal of Solid State Chemistry, 183, 1141–1149.

    Article  CAS  Google Scholar 

  • Guibal, E., Lorenzelli, R., Vincent, T., & Lecloirec, P. (1995). Application of silica-gel to metal-ion sorption—static and dynamic removal of uranyl ions. Environmental Technology, 16, 101–114.

    Article  CAS  Google Scholar 

  • Guler, H., Sahiner, N., Aycik, G. A., & Guven, O. (1997). Development of novel adsorbent materials for recovery and enrichment of uranium from aqueous media. Journal of Applied Polymer Science, 66, 2475–2480.

    Article  CAS  Google Scholar 

  • Karadag, E., Saraydin, D., & Guven, O. (1995). Behaviors of acrylamide itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions. Separation Science and Technology, 30, 3747–3760.

    Article  CAS  Google Scholar 

  • Khedr, M. G. (2013). Radioactive contamination of groundwater, special aspects and advantages of removal by reverse osmosis and nanofiltration. Desalination, 321, 47–54.

    Article  Google Scholar 

  • Korichi, S., & Bensmaili, A. (2009). Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling. Journal of Hazardous Materials, 169, 780–793.

    Article  CAS  Google Scholar 

  • Kundakci, S., Uzum, O. B., & Karadag, E. (2009). Behaviors of chemically crosslinked CAAMPS hydrogels in uptake of uranyl ions from aqueous solutions. Polymer-Plastics Technology and Engineering, 48, 69–74.

    Article  CAS  Google Scholar 

  • Liu, Y. H., Cao, X. H., Hua, R., Wang, Y. Q., Liu, Y. T., Pang, C., et al. (2010). Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel. Hydrometallurgy, 104, 150–155.

    Article  CAS  Google Scholar 

  • Migianu-Griffoni, E., Mbemba, C., Burgada, R., Lecercle, D., Taran, F., & Lecouvey, M. (2009). Design and synthesis of new polyphosphorylated upper-rim modified calix[4]arenes as potential and selective chelating agents of uranyl ion. Tetrahedron, 65, 1517–1523.

    Article  CAS  Google Scholar 

  • Nash, K. L. (1993). Stability and stoichiometry of uranyl phosphonate coordination-compounds in acidic aqueous-solutions. Radiochimica Acta, 61, 147–154.

    CAS  Google Scholar 

  • Ortaboy, S., Acar, E. T., Atun, G., Emik, S., Iyim, T. B., Guclu, G., et al. (2013). Performance of acrylic monomer based terpolymer/montmorillonite nanocomposite hydrogels for U(VI) removal from aqueous solutions. Chemical Engineering Research and Design, 91, 670–680.

    Article  CAS  Google Scholar 

  • Ozay, O., Ekici, S., Baran, Y., Aktas, N., & Sahiner, N. (2009). Removal of toxic metal ions with magnetic hydrogels. Water Research, 43, 4403–4411.

    Article  CAS  Google Scholar 

  • Ozay, O., Ekici, S., Baran, Y., Kubilay, S., Aktas, N., & Sahiner, N. (2010). Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments. Desalination, 260, 57–64.

    Article  CAS  Google Scholar 

  • Pekel, H., Sahiner, N., Akkas, P., & Guven, O. (2000). Uranyl ion adsorptivity of N-vinyl 2-pyrrolidone/acrylonitrile copolymeric hydrogels containing amidoxime groups. Polymer Bulletin, 44, 593–600.

    Article  CAS  Google Scholar 

  • Pekel, N., Sahiner, N., & Guven, O. (2001). Use of amidoximated acrylonitrile/N-vinyl 2-pyrrolidone interpenetrating polymer networks for uranyl ion adsorption from aqueous systems. Journal of Applied Polymer Science, 81, 2324–2329.

    Article  CAS  Google Scholar 

  • Preetha, C. R., Gladis, J. M., Rao, T. P., & Venkateswaran, G. (2006). Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles. Environmental Science & Technology, 40, 3070–3074.

    Article  CAS  Google Scholar 

  • Sahiner, N. (2006). In situ metal particle preparation in cross-linked poly(2-acrylamido-2-methyl-1-propansulfonic acid) hydrogel networks. Colloid and Polymer Science, 285, 283–292.

    Article  CAS  Google Scholar 

  • Sahiner, N. (2007). Hydrogel nanonetworks with functional core-shell structure. European Polymer Journal, 43, 1709–1717.

    Article  CAS  Google Scholar 

  • Sahiner, N. (2013a). Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Progress in Polymer Science, 38, 1329–1356.

    Article  CAS  Google Scholar 

  • Sahiner, N. (2013b). Preparation of poly(ethylene imine particles) for versatile applications. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 433, 212--218.

  • Sahiner, N., & Ilgin, P. (2010a). Multiresponsive polymeric particles with tunable morphology and properties based on acrylonitrile (AN) and 4-vinylpyridine (4-VP). Polymer, 51, 3156–3163.

    Article  CAS  Google Scholar 

  • Sahiner, N., & Ilgin, P. (2010b). Synthesis and characterization of soft polymeric nanoparticles and composites with tunable properties. Journal of Polymer Science Part A-Polymer Chemistry, 48, 5239–5246.

    Article  CAS  Google Scholar 

  • Sahiner, N., & Sagbas, S. (2013). The preparation of poly(vinyl phosphonic acid) hydrogels as new functional materials for in situ metal nanoparticle preparation. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 418, 76–83.

    Article  CAS  Google Scholar 

  • Sahiner, N., Pekel, N., & Guven, O. (1998). Radiation synthesis of N-vinyl 2-pyrrolidone acrylonitrile interpenetrating polymer networks and their use in uranium recovery from aqueous systems. Radiation Physics and Chemistry, 52, 271–276.

    Article  CAS  Google Scholar 

  • Sahiner, N., Pekel, N., Akkas, P., & Guven, O. (2000). Amidoximation and characterization of new complexing hydrogels prepared from N-vinyl 2-pyrrolidone/acrylonitrile systems. Journal of Macromolecular Science-Pure and Applied Chemistry, 37, 1159–1172.

    Article  Google Scholar 

  • Sahiner, N., Butun, S., & Ilgin, P. (2011a). Hydrogel particles with core shell morphology for versatile applications: environmental, biomedical and catalysis. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 386, 16–24.

    Article  CAS  Google Scholar 

  • Sahiner, N., Butun, S., & Ilgin, P. (2011b). Soft hydrogel particles with high functional value. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 381, 74–84.

    Article  CAS  Google Scholar 

  • Sahiner, N., Ozay, O., Aktas, N., Blake, D. A., & John, V. T. (2011c). Arsenic (V) removal with modifiable bulk and nano p(4-vinylpyridine)-based hydrogels: the effect of hydrogel sizes and quarternization agents. Desalination, 279, 344–352.

    Article  CAS  Google Scholar 

  • Sahiner, N., Ozay, O., Inger, E., & Aktas, N. (2011d). Controllable hydrogen generation by use smart hydrogel reactor containing Ru nano catalyst and magnetic iron nanoparticles. Journal of Power Sources, 196, 10105–10111.

    Article  CAS  Google Scholar 

  • Sahiner, N., Yu, H. N., Tan, G., He, J. B., John, V. T., & Blake, D. A. (2012). Highly porous acrylonitrile-based submicron particles for UO22+ absorption in an immunosensor Assay. ACS Applied Materials & Interfaces, 4, 163–170.

    Article  CAS  Google Scholar 

  • Saraydin, D., Karadag, E., & Guven, O. (1995). Adsorptions of some heavy-metal ions in aqueous-solutions by acrylamide maleic-acid hydrogels. Separation Science and Technology, 30, 3287–3298.

    Article  CAS  Google Scholar 

  • Saraydin, D., Isikver, Y., & Sahiner, N. (2001). Uranyl ion binding properties of poly(hydroxamic acid) hydrogels. Polymer Bulletin, 47, 81–89.

    Article  CAS  Google Scholar 

  • Sizgek, G. D., Griffith, C. S., Sizgek, E., & Luca, V. (2009). Mesoporous zirconium titanium oxides. Part 3. Synthesis and adsorption properties of unfunctionalized and phosphonate-functionalized hierarchical polyacrylonitrile-F-127-templated beads. Langmuir, 25, 11874–11882.

    Article  CAS  Google Scholar 

  • Yazzie, M., Gamble, S. L., Civitello, E. R., & Stearns, D. M. (2003). Uranyl acetate causes DNA single strand breaks in vitro in the presence of ascorbate (vitamin C). Chemical Research in Toxicology, 16, 524–530.

    Article  CAS  Google Scholar 

  • Yusan, S., & Erenturk, S. (2011). Sorption behaviors of uranium (VI) ions on alpha-FeOOH. Desalination, 269, 58–66.

    Article  CAS  Google Scholar 

  • Zhang, X. F., Ji, L. Y., Wang, J., Li, R. M., Liu, Q., Zhang, M. L., et al. (2012). Removal of uranium(VI) from aqueous solutions by magnetic Mg-Al layered double hydroxide intercalated with citrate: kinetic and thermodynamic investigation. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 414, 220–227.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to the financial support from the Turkish Ministry of Science, Industry, and Technology (00533.STZ.2010-1). Support from Selin Sagbas is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurettin Sahiner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahiner, N. Fast and High Amount of Uranyl Ion Uptake by p(Vinyl Phosphonic Acid) Microgels Prepared by UV Irradiation Technique. Water Air Soil Pollut 225, 1982 (2014). https://doi.org/10.1007/s11270-014-1982-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1982-1

Keywords

Navigation