Skip to main content
Log in

Preconcentration of Rare Earth Elements Using Amberlite XAD-4 Modified With 2,6-Pyridinedicarboxaldehyde and Their Determination by Inductively Coupled Plasma Optical Emission Spectrometry

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A new solid phase extraction method was developed for the preconcentration and determination of rare earth elements (REEs) (Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, Lu, Ce) in water samples. The method is based on the sorption of REE ions onto the 2,6-pyridinedicarboxaldehyde-functionalized Amberlite XAD-4 resin at pH 7.0, followed by the elution with 2 mL of 1.0 mol L−1 HNO3 solution and determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The main parameters affecting preconcentration, including sample pH, sample and eluent flow rate, and sample volume, have been investigated in detail. Under the optimum conditions (pH 7.0, sample flow rate of 1.0 mL min−1, and eluent flow rate of 4.0 mL min−1), detection limits between 0.011 and 0.298 μg L−1 for a 25 mL sample volume and 0.006 and 0.149 μg L−1 for a 50 mL sample volume were obtained. The sorption capacities for the resin were found to range between 49.0 μmol g−1 (for Lu) and 66.7 μmol g−1 (for Sm). The method was validated by analysis using a surface water certified reference material (SPS-SW2 Batch 127). The proposed method was successfully applied to the determination of REEs in tap water and seawater samples. The recovery values for the spiked water samples were in the range of 90.0–101.7 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bahramifar, N., & Yamini, Y. (2005). On-line preconcentration of some rare earth elements in water samples using C18-cartridge modified with l-(2-pyridylazo) 2-naphtol (PAN) prior to simultaneous determination by inductively coupled plasma optical emission spectrometry (ICP–OES). Analytica Chimica Acta, 540, 325–332.

    Article  CAS  Google Scholar 

  • Cai, B., Hu, B., Xiong, H., Liao, Z., Mao, L., & Jiang, Z. (2001). Preconcentration of lanthanum, europium and ytterbium with tribromoarsenazo–cetylpyridinium bromide supported on microcrystalline naphthalene and their determinations by inductively coupled plasma atomic emission spectrometry. Talanta, 55, 85–91.

    Article  CAS  Google Scholar 

  • Chandrasekaran, K., Karunasagar, D., & Arunachalam, J. (2012). Dispersive liquid–liquid micro-extraction for simultaneous preconcentration of 14 lanthanides at parts per trillion levels from groundwater and determination using a micro-flow nebulizer in inductively coupled plasma-quadrupole mass spectrometry. Journal of Analytical Atomic Spectrometry, 27, 1024–1031.

    Article  CAS  Google Scholar 

  • Chen, S., Xiao, M., Lu, D., & Zhan, X. (2007). Carbon nanofibers as solid-phase extraction adsorbent for the preconcentration of trace rare earth elements and their determination by inductively coupled plasma mass spectrometry. Analytical Letters, 40, 2105–2115.

    Article  CAS  Google Scholar 

  • Cho, J., Chung, K. W., Choi, M. S., & Kim, H. J. (2012). Analysis of rare earth elements in seawater by inductively coupled plasma mass spectrometry after pre-concentration using TSKTM-HD-MW-CNTs (highly dispersive multi-walled carbon nanotubes). Talanta, 99, 369–374.

    Article  CAS  Google Scholar 

  • Dave, S. R., Kaur, H., & Menon, S. K. (2010). Selective solid-phase extraction of rare earth elements by the chemically modified Amberlite XAD-4 resin with azacrown ether. Reactive & Functional Polymers, 70, 692–698.

    Article  CAS  Google Scholar 

  • De Vito, I. E., Olsina, R. A., Raba, J., & Masi, A. N. (2004). Flow injection preconcentration by chemofiltration and spectrophotometric determination of Gd. Analytica Chimica Acta, 501, 11–16.

    Article  Google Scholar 

  • Dev, K., Pathak, R., & Rao, G. N. (1999). Sorption behaviour of lanthanum(III), neodymium(III), terbium(III), thorium(IV) and uranium(VI) on Amberlite XAD-4 resin functionalized with bicine ligands. Talanta, 48, 579–584.

    Article  CAS  Google Scholar 

  • Fedyunina, N. N., Ossipov, K. B., Seregina, I. F., Bolshov, M. A., Statkus, M. A., & Tsysin, G. I. (2012). Determination of rare earth elements in rock samples by inductively coupled plasma mass-spectrometry after sorption preconcentration using Pol-DETATA sorbent. Talanta, 102, 28–131.

    Article  Google Scholar 

  • Fua, Q., Yang, L., & Wang, Q. (2007). On-line preconcentration with a novel alkyl phosphinic acid extraction resin coupled with inductively coupled plasma mass spectrometry for determination of trace rare earth elements in seawater. Talanta, 72, 1248–1254.

    Article  Google Scholar 

  • Hang, Y., Qin, Y., & Shen, J. (2003). Separation and microcolumn preconcentration of traces of rare earth elements on nanoscale TiO2 and their determination in geological samples by ICP-AES. Journal of Separation Science, 26, 957–960.

    Article  CAS  Google Scholar 

  • Hennebrüder, K., Wennrich, R., Mattusch, J., Stark, H. J., & Engewald, W. (2004). Determination of gadolinium in river water by SPE preconcentration and ICP-MS. Talanta, 63, 309–316.

    Article  Google Scholar 

  • Hsieh, H. F., Chen, Y. H., & Wang, C. F. (2011). A magnesium hydroxide preconcentration/matrix reduction method for the analysis of rare earth elements in water samples using laser ablation inductively coupled plasma mass spectrometry. Talanta, 85, 983–999.

    Article  CAS  Google Scholar 

  • Jia, Q., Kong, X., Zhou, W., & Bi, L. (2008). Flow injection on-line preconcentration with an ion-exchange resin coupled with microwave plasma torch-atomic emission spectrometry for the determination of trace rare earth elements. Microchemical Journal, 89, 82–87.

    Article  CAS  Google Scholar 

  • Kajiya, T., Aiharab, M., & Hirata, S. (2004). Determination of rare earth elements in seawater by inductively coupled plasma mass spectrometry with on-line column pre-concentration using 8-quinolinole-immobilized fluorinated metal alkoxide glass. Spectrochimica Acta Part B, 59, 543–550.

    Article  Google Scholar 

  • Karadaş, C., Kara, D., & Fisher, A. (2011). Determination of rare earth elements in seawater by inductively coupled plasma mass spectrometry with off-line column preconcentration using 2,6-diacetylpyridine functionalized Amberlite XAD-4. Analytica Chimica Acta, 689, 184–189.

    Article  Google Scholar 

  • Karadaş, C., Turhan, O., & Kara, D. (2013). Synthesis and application of a new functionalized resin for use in an on-line, solid phase extraction system for the determination of trace elements in waters and reference cereal materials by flame atomic absorption spectrometry. Food Chemistry, 141, 655–661.

    Article  Google Scholar 

  • Kumar, S. A., Pandey, S. P., Shenoy, N. S., & Kumar, S. D. (2011). Matrix separation and preconcentration of rare earth elements from seawater by poly hydroxamic acid cartridge followed by determination using ICP-MS. Desalination, 281, 49–54.

    Article  CAS  Google Scholar 

  • Li, Y., & Hu, B. (2010). Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological samples. Journal of Hazardous Materials, 174, 534–540.

    Article  CAS  Google Scholar 

  • Li, D., Chang, X., Hu, Z., Wang, Q., Li, R., & Chai, X. (2011). Samarium (III) adsorption on bentonite modified with N-(2-hydroxyethyl) ethylenediamine. Talanta, 83, 1742–1747.

    Article  CAS  Google Scholar 

  • Li, Y., Yang, J. L., & Jiang, Y. (2012). Trace rare earth element detection in food and agricultural products based on flow injection walnut shell packed microcolumn preconcentration coupled with inductively coupled plasma mass spectrometry. Journal of Agricultural and Food Chemistry, 60, 3033–3041.

    Article  CAS  Google Scholar 

  • Liang, P., & Chen, X. (2005). Preconcentration of rare earth elements on silica gel loaded with 1-phenyl-3-methyl-4-benzoylpyrazol-5-one prior to their determination by ICP-AES. Analytical Sciences, 21, 1185–1188.

    Article  CAS  Google Scholar 

  • Liang, P., & Fa, W. (2005). Determination of La, Eu and Yb in water samples by inductively coupled plasma atomic emission spectrometry after solid phase extraction of their 1-phenyl-3-methyl-4-benzoylpyrazol-5-one complexes on silica gel column. Microchimica Acta, 150, 15–19.

    Article  CAS  Google Scholar 

  • Liang, P., Hu, B., Jiang, Z., Qin, Y., & Peng, T. (2001). Nanometer-sized titanium dioxide micro-column on-line preconcentration of La, Y, Yb, Eu, Dy and their determination by inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 16, 863–866.

    Article  CAS  Google Scholar 

  • Liang, P., Liu, Y., & Guo, L. (2005). Determination of trace rare earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with multiwalled carbon nanotubes. Spectrochimica Acta Part B, 60, 125–129.

    Article  Google Scholar 

  • Liang, P., Cao, J., Liu, R., & Liu, Y. (2007). Determination of trace rare earth elements by inductively coupled plasma optical emission spectrometry after preconcentration with immobilized nanometer titanium dioxide. Microchimica Acta, 159, 35–40.

    Article  CAS  Google Scholar 

  • Liawruangrath, S., & Sakulkhaemaruethai, S. (2003). Flow injection spectrophotometric determination of europium using chlortetracycline. Talanta, 59, 9–18.

    Article  CAS  Google Scholar 

  • Liu, D., Lv, X. J., Zhang, J. L., Jia, Q., & Liao, W. P. (2012). Polymer monolith microextraction coupled to microwave plasma torch–atomic emission spectrometry for the determination of Nd, Eu and Yb in tea samples. Analytical Methods, 4, 2970–2976.

    Article  CAS  Google Scholar 

  • Minowa, H., & Ebihara, M. (2003). Separation of rare earth elements from scandium by extraction chromatography: application to radiochemical neutron activation analysis for trace rare-earth elements in geological samples. Analitica Chimica Acta, 498, 25–37.

    Article  CAS  Google Scholar 

  • Navarro, M. S., Ulbrich, H. H. G. J., Andrade, S., & Janasi, V. A. (2002). Adaptation of ICP–OES routine determination techniques for the analysis of rare earth elements by chromatographic separation in geologic materials: tests with reference materials and granitic rocks. Journal of Alloys and Compounds, 344, 40–45.

    Article  CAS  Google Scholar 

  • Orescanin, V., Mikelic, L., Roje, V., & Lulic, S. (2006). Determination of lanthanides by source excited energy dispersive X-ray fluorescence (EDXRF) method after preconcentration with ammonium pyrrolidine dithiocarbamate (APDC). Analytica Chimica Acta, 570, 277–282.

    Article  CAS  Google Scholar 

  • Ortega, C., Gomez, M. R., Olsina, R. A., Silva, M. F., & Martinez, L. D. (2002). On-line cloud point preconcentration and determination of gadolinium in urine using flow injection inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 17, 530–533.

    Article  CAS  Google Scholar 

  • Pasinli, T., Eroglu, A. E., & Shahwan, T. (2005). Preconcentration and atomic spectrometric determination of rare earth elements (REEs) in natural water samples by inductively coupled plasma atomic emission spectrometry. Analytica Chimica Acta, 547, 42–49.

    Article  CAS  Google Scholar 

  • Salonia, J. A., Gasquez, J. A., Martinez, L. D., Cerutti, S., Kaplan, M., & Olsina, R. A. (2006). Inductively coupled plasma optical emission spectrometric determination of gadolinium in urine using flow injection on-line sorption preconcentration in a knotted reactor. Instrumentation Science and Technology, 34, 305–316.

    Article  CAS  Google Scholar 

  • Shaw, T. J., Duncan, T., & Schnetger, B. (2003). A preconcentration/matrix reduction method for the analysis of rare earth elements in seawater and groundwaters by isotope dilution ICP-MS. Analytical Chemistry, 75, 3396–3403.

    Article  CAS  Google Scholar 

  • Tajabadi, F., Yamini, Y., & Sovizi, M. (2013). Carbon-based magnetic nanocomposites in solid phase dispersion for the preconcentration some of lanthanides, followed by their quantitation via ICP-OES. Microchimica Acta, 180, 65–73.

    Article  CAS  Google Scholar 

  • Waqar, F., Jan, S., Mohammad, B., Hakim, M., Alamb, S., & Yawar, W. (2009). Preconcentration of rare earth elements in seawater with chelating resin having fluorinated-diketone immobilized on styrene divinyl benzene for their determination by ICP-OES. Journal of the Chinese Chemical Society, 56, 335–340.

    Article  CAS  Google Scholar 

  • Wu, S., He, M., Hu, B., & Jiang, Z. (2007). Determination of trace rare earth elements in natural water by electrothermal vaporization ICP-MS with pivaloyltrifluoroacetone as chemical modifier. Microchimica Acta, 159, 269–275.

    Article  CAS  Google Scholar 

  • Wu, S., Hu, C., He, M., Chen, B., & Hu, B. (2013). Capillary microextraction combined with fluorinating assisted electrothermal vaporization inductively coupled plasma optical emission spectrometry for the determination of trace lanthanum, europium, dysprosium and yttrium in human hair. Talanta, 115, 342–348.

    Article  CAS  Google Scholar 

  • Xuejuan, L., & Zhefeng, F. (2009). Liquid–liquid–liquid micro extraction combined with CE for the determination of rare earth elements in water samples. Chromatographia, 70, 481–487.

    Article  Google Scholar 

  • Zereen, F., Yilmaz, V., & Arslan, Z. (2013). Solid phase extraction of rare earth elements in seawater and estuarine water with 4-(2-thiazolylazo) resorcinol immobilized Chromosorb 106 for determination by inductively coupled plasma mass spectrometry. Microchemical Journal, 110, 178–184.

    Article  CAS  Google Scholar 

  • Zhang, N., Hu, B., & Huang, C. (2007). A new ion-imprinted silica gel sorbent for on-line selective solid-phase extraction of dysprosium(III) with detection by inductively coupled plasma-atomic emission spectrometry. Analytica Chimica Acta, 597, 12–18.

    Article  CAS  Google Scholar 

  • Zhang, J., Cheng, R., Tong, S., Gu, X., Quan, X., Liu, Y., et al. (2011). Microwave plasma torch-atomic emission spectrometry for the on-line determination of rare earth elements based on flow injection preconcentration by TiO2–graphene composite. Talanta, 86, 114–120.

    Article  CAS  Google Scholar 

  • Zhang, L., Chen, B., He, M., & Hu, B. (2013). Polymer monolithic capillary microextraction combined on-line with inductively coupled plasma MS for the determination of trace rare earth elements in biological samples. Journal of Separation Science, 36, 2158–2167.

    Article  CAS  Google Scholar 

  • Zhu, Y., Inagaki, K., Haraguchi, H., & Chiba, K. (2010). On-line elution of iron hydroxide coprecipitate carrier for determination of REEs in natural water by mix-gas ICP-MS. Journal of Analytical Atomic Spectrometry, 25, 364–369.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Balikesir University (Project No: 2013/78) for the financial support. They also thank Balikesir University Research Center of Applied Sciences for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cennet Karadaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karadaş, C., Kara, D. Preconcentration of Rare Earth Elements Using Amberlite XAD-4 Modified With 2,6-Pyridinedicarboxaldehyde and Their Determination by Inductively Coupled Plasma Optical Emission Spectrometry. Water Air Soil Pollut 225, 1972 (2014). https://doi.org/10.1007/s11270-014-1972-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1972-3

Keywords

Navigation