Skip to main content
Log in

Adsorptive Removal of Trivalent Chromium in Aqueous Solution Using Precipitate Produced from Aluminum Tanning Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Precipitate adsorbent was produced from aluminum tanning wastewater by alkali precipitation and characterized by XPF, XRD, and FTIR. The results showed that the main components of the precipitate were Al, Ti, and Zr. The adsorption equilibrium for Cr3+ on the precipitate was reached within 60 min. The precipitate had better removal for Cr3+ from wastewater at pH 7.0. The kinetic process of adsorption can be described by the pseudo-second-order kinetic equation, and the adsorption isotherm fitted to the Langmuir model very well. Co-existed cations (Na+, Ca2+) in aqueous solution restrained Cr3+ adsorption on the precipitate. The adsorption of Cr3+ on the precipitate was mainly through the complexation and ion-exchange mechanisms, and oxide may play a major role in Cr3+ adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Almeida, M. A. F., & Boaventura, R. A. R. (1998). Chromium precipitation from tanning spent liquors using industrial alkaline residues: a comparative study. Waste Management, 17, 145–152.

    Article  Google Scholar 

  • Álvarez-Ayuso, E., García-Sánchez, A., & Querol, X. (2007). Adsorption of Cr(VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide. Journal of Hazardous Materials, 142, 191–198.

    Article  Google Scholar 

  • Braukmann, B. M. (1990). Industrial solutions amenable to biosorption. In B. Volesky (Ed.), Biosorption of heavy metals (pp. 51–64). USA: CRC Press.

    Google Scholar 

  • Costa, M. (2003). Potential hazards of hexavalent chromate in our drinking water. Toxicology and Applied Pharmacology, 188, 1–5.

    Article  CAS  Google Scholar 

  • Debasish Das, M. K., Sureshkumar, K., & Radhakrishnan, J. (2011). Adsorptive removal of Cr(III) from aqueous solutions using tripolyphosphate cross-linked chitosan beads. Journal of Radioanalytical and Nuclear Chemistry, 289, 275–285.

    Article  Google Scholar 

  • Deng, S. B., & Bai, R. B. (2004). Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms. Water Research, 38, 2424–2432.

    Article  CAS  Google Scholar 

  • Granados-Correa, F., & Jimenez-Becerril, J. (2009). Chromium (VI) adsorption on boehmite. Journal of Hazardous Materials, 162, 1178–1184.

    Article  CAS  Google Scholar 

  • Guru, M., Venedik, D., & Murathan, A. (2008). Removal of trivalent chromium from water using low-cost natural diatomite. Journal of Hazardous Materials, 160, 318–323.

    Article  CAS  Google Scholar 

  • Gzara, L., & Dhahbi, M. (2001). Removal of chromate anions by micellar-enhanced ultra-filtration using cationic surfactants. Desalination, 137, 241–250.

    Article  CAS  Google Scholar 

  • Iqbal, M., Schiewer, S., & Cameron, R. (2009). Mechanistic elucidation and evaluation of biosorption of metal ions by grapefruit peel using FTIR spectroscopy, kinetics and isotherms modeling, cations displacement and EDX analysis. Journal of Chemical Technology and Biotechnology, l84, 1516–1526.

    Article  Google Scholar 

  • Kozlowski, C. A., & Walkowiak, W. (2002). Removal of chromium (VI) from aqueous solutions by polymer inclusion membranes. Water Research, 36, 4870–4876.

    Article  CAS  Google Scholar 

  • Kumar, P. A., Ray, M., & Chakraborty, S. (2009). Adsorption behaviour of trivalent chromium on amine-based polymer aniline formaldehyde condensate. Chemical Engineering Journal, 149, 340–347.

    Article  CAS  Google Scholar 

  • Lee, S. M., Kim, W. G., & Laldawngliana, C. (2010). Removal behavior of surface modified sand for Cd(II) and Cr(VI) from aqueous solutions. Journal of Chemical and Engineering Data, 55, 3089–3094.

    Article  CAS  Google Scholar 

  • Lofrano, G., Meriç, S., & Zengin, G. E. (2013). Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. The Science of the Total Environment, 461–462, 265–281.

    Article  Google Scholar 

  • Mohanty, K., Jha, M., Meikap, B. C., & Biswas, M. N. (2005). Removal of chromium (VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chemical Engineering Science, 60, 3049–3059.

    Article  CAS  Google Scholar 

  • Mohanty, K., Jha, M., Meikap, B. C., & Biswas, M. N. (2006). Biosorption of Cr(VI) from aqueous solutions by Eichhornia crassipes. Chemical Engineering Journal, 117, 71–77.

    Article  CAS  Google Scholar 

  • Prigione, V., Zerlottin, M., Refosco, D., Tigini, V., Anastasi, A., & Varese, G. C. (2009). Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi. Bioresource Technology, 2(2), 40–49.

    Google Scholar 

  • Rodrigues, L. A., & Maschio, L. J. (2010). Adsorption of Cr(VI) from aqueous solution by hydrous zirconium oxide. Journal of Hazardous Materials, 173, 630–636.

    Article  CAS  Google Scholar 

  • Sarin, V., & Pant, K. K. (2006). Removal of chromium from industrial waste by using eucalyptus bark. Bioresource Technology, 97, 15–20.

    Article  CAS  Google Scholar 

  • Schneider, R. M., Cavalin, C. F., & Barros, S. D. (2007). Adsorption of chromium ions in activated carbon. Chemical Engineering Journal, 132, 355–362.

    Article  CAS  Google Scholar 

  • Sharma, Y. C. (2003). Cr(VI) from industrial effluents by adsorption on an indigenous low-cost material. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 215, 155–162.

    Article  CAS  Google Scholar 

  • Tel, H., Altas, Y., & Taner, M. S. (2004). Adsorption characteristics and separation of Cr(III) and Cr(VI) on hydrous titanium(IV) oxide. Journal of Hazardous Materials B, 112, 225–231.

    Article  CAS  Google Scholar 

  • Turan, P., Dogan, M., & Alkan, M. (2007). Uptake of trivalent chromium ions from aqueous solutions using kaolinite. Journal of Hazardous Materials, 148, 56–63.

    Article  CAS  Google Scholar 

  • Weng, C. H., Sharma, Y. C., & Chu, S. H. (2008). Adsorption of Cr(VI) from aqueous solutions by spent activated clay. Journal of Hazardous Materials, 155, 65–75.

    Article  CAS  Google Scholar 

  • Williford, C. W., Bricka, R. M., & Foster, C. C. (2002). Reduction of suspended solids following hydro-classification of metal-contaminated soils. Journal of Hazardous Materials, 92, 63–75.

    Article  CAS  Google Scholar 

  • Wu, D. Y., Sui, Y. M., He, S. B., Wang, X. Z., Li, C. J., & Kong, H. N. (2008). Removal of trivalent chromium from aqueous solutions by zeolite synthesized from coal fly ash. Journal of Hazardous Materials, 155, 415–423.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21177079).

Author information

Authors and Affiliations

Corresponding author

Correspondence to Li Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Hua, L., Lian, K. et al. Adsorptive Removal of Trivalent Chromium in Aqueous Solution Using Precipitate Produced from Aluminum Tanning Wastewater. Water Air Soil Pollut 225, 1956 (2014). https://doi.org/10.1007/s11270-014-1956-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1956-3

Keywords