Skip to main content
Log in

Functionalized Magnetic Microparticles for Fast and Efficient Removal of Textile Dyes from Aqueous Solution

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The use of magnetic micro- and nanoparticles for the removal of pollutants from wastewater is gaining increasing attention. Here, amine-functionalized magnetic microparticles (AFMMs) and carboxylic-functionalized magnetic microparticles (CFMMs) were synthesized by modifying the surface of Fe3O4 with amino and carboxyl groups for fast and efficient removal of textile dyes from aqueous solution. The functionalized magnetic microparticles were characterized by TEM, SEM, FTIR, and VSM. The adsorption experiments were carried out by varying the regulating parameters like solution pH and adsorbent dosage and analyzed in terms of kinetic and isotherm models. It was demonstrated that simple electrostatic interactions between functionalized magnetic microparticles and adsorbates played a dominating role in the adsorption of textile dyes. The positively charged AFMMs adsorbed the negatively charged dyes vat blue (VB) and direct violet (DV) at pH 6 with the maximum removal percentages of 95.72 and 97.29 %, respectively. The maximum removal percentages of cationic dyes methylene blue (MB) and azure A chloride (AA) on the negatively charged CFMMs were 92.28 and 92.22 % at pH 11, respectively. Moreover, the adsorbed dyes could be desorbed completely from the surface of CFMMs at a lower pH, and AFMMs also allowed rapid removal of VB and DV in different water samples. All the results in the present work demonstrated that the functionalized magnetic microparticles as efficient, magnetically separable adsorbents are attractive for the removal of dye pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Afkhami, A., Saber-Tehrani, M., & Bagheri, H. (2010). Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. Desalination, 263(1–3), 240–248.

    Article  CAS  Google Scholar 

  • Ahmad, R., & Kumar, R. (2010). Conducting polyaniline/iron oxide composite: a novel adsorbent for the removal of Amido Black 10B. Journal of Chemical and Engineering Data, 55, 3489–3493.

    Article  CAS  Google Scholar 

  • Atakay, M., Celikbicak, O., & Salih, B. (2012). Amine-functionalized sol-gel-based lab-in-a-pipet-tip approach for the fast enrichment and specific purification of phosphopeptides in MALDI-MS applications. Analytical Chemistry, 84(6), 2713–2720.

    Article  CAS  Google Scholar 

  • Bai, S., Shen, X., Zhong, X., Liu, Y., Zhu, G., Xu, X., et al. (2012). One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon, 50(6), 2337–2346.

    Article  CAS  Google Scholar 

  • Bazrafshan, E., Mostafapour, F. K., & Zazouli, M. A. (2012). Methylene blue (cationic dye) adsorption into Salvadora persica stems ash. Journal of Biotechnology, 11(101), 16661–16668.

    CAS  Google Scholar 

  • Bedabrata, S., Sourav, D., Jiban, S., & Gopal, D. (2011). Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: a comparative study. The Journal of Physical Chemistry C, 115, 8024–8033.

    Google Scholar 

  • Chaari, I., Feki, M., Medhioub, M., Bouzid, J., Fakhfakh, E., & Jamoussi, F. (2009). Adsorption of a textile dye “Indanthrene Blue RS (C.I. Vat Blue 4)” from aqueous solutions onto smectite-rich clayey rock. Journal of Hazardous Materials, 172(2–3), 1623–1628.

    Article  CAS  Google Scholar 

  • Chen, R., Song, G., & Wei, Y. (2010). Synthesis of variable-sized Fe3O4 nanocrystals by visible light irradiation at room temperature. The Journal of Physical Chemistry C, 114, 13409–13413.

    Article  CAS  Google Scholar 

  • Cheng, R., Ou, S., Xiang, B., Li, Y., & Liao, Q. (2010). Equilibrium and molecular mechanism of anionic dyes adsorption onto copper(II) complex of dithiocarbamate-modified starch. Langmuir, 26(2), 752–758.

    Article  CAS  Google Scholar 

  • Deng, H., Li, X., Peng, Q., Wang, X., Chen, J., & Li, Y. (2005). Monodisperse magnetic single-crystal ferrite microspheres. Angewandte Chemie International Edition, 44(18), 2782–2785.

    Article  CAS  Google Scholar 

  • Duran, C., Ozdes, D., Gundogdu, A., & Senturk, H. B. (2011). Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low cost adsorbent. Journal of Chemical & Engineering Data, 56(5), 2136–2147.

    Article  CAS  Google Scholar 

  • El-Boubbou, K., Gruden, C., & Huang, X. (2007). Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. Journal of the American Chemical Society, 129(44), 13392–13393.

    Article  CAS  Google Scholar 

  • El-Rahim, W. M. A., El-Ardy, O. A. M., & Mohammad, F. H. A. (2009). The effect of pH on bioremediation potential for the removal of direct violet textile dye by Aspergillus niger. Desalination, 249(3), 1206–1211.

    Article  Google Scholar 

  • Gong, J. L., Wang, B., Zeng, G. M., Yang, C. P., Niu, C. G., Niu, Q. Y., et al. (2009). Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. Journal of Hazardous Materials, 164(2–3), 1517–1522.

    Article  CAS  Google Scholar 

  • Gu, J., Liu, J., Li, Y., Zhao, W., & Shi, J. (2013). One-pot synthesis of mesoporous silica nanocarriers with tunable particle sizes and pendent carboxylic groups for cisplatin delivery. Langmuir, 29(1), 403–410.

    Article  CAS  Google Scholar 

  • Huang, Y. F., Li, Y., Jiang, Y., & Yan, X.-P. (2010a). Magnetic immobilization of amine-functionalized magnetite microspheres in a knotted reactor for on-line solid-phase extraction coupled with ICP-MS for speciation analysis of trace chromium. Journal of Analytical Atomic Spectrometry, 25(9), 1467–1474.

    Article  CAS  Google Scholar 

  • Huang, Y. F., Wang, Y. F., & Yan, X.-P. (2010b). Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environmental Science & Technology, 44(20), 7908–7913.

    Article  CAS  Google Scholar 

  • Kavitha, D., & Namasivayam, C. (2007). Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technology, 98(1), 14–21.

    Article  CAS  Google Scholar 

  • Liu, J., Sun, Z., Deng, Y., Zou, Y., Li, C., Guo, X., et al. (2009). Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angewandte Chemie International Edition, 48(32), 5875–5879.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M., Hayati, B., & Aram, M. (2010). Textile dye removal from single and ternary systems using date stones: kinetic, isotherm, and thermodynamic studies. Journal of Chemical and Engineering Data, 55, 4638–4649.

    Article  CAS  Google Scholar 

  • Parasuraman, D., & Serpe, M. J. (2011). Poly (N-isopropylacrylamide) microgels for organic dye removal from water. ACS Applied Materials & Interfaces, 3(7), 2732–2737.

    Article  CAS  Google Scholar 

  • Rosales, E., Pazos, M., Sanromán, M. A., & Tavares, T. (2012). Application of zeolite-Arthrobacter viscosus system for the removal of heavy metal and dye: chromium and azure B. Desalination, 284, 150–156.

    Article  CAS  Google Scholar 

  • Roy, A., Adhikari, B., & Majumder, S. B. (2013). Equilibrium, kinetic, and thermodynamic studies of azo dye adsorption from aqueous solution by chemically modified lignocellulosic jute fiber. Industrial & Engineering Chemistry Research, 52(19), 6502–6512.

    Article  CAS  Google Scholar 

  • Saha, B., Das, S., Saikia, J., & Das, G. (2011). Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: a comparative study. The Journal of Physical Chemistry C, 115(16), 8024–8033.

    Article  CAS  Google Scholar 

  • Sharma, Y., Uma, C., & Upadhyay, S. N. (2009). Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energy & Fuels, 23, 2983–2988.

    Article  CAS  Google Scholar 

  • Sun, H., Cao, L., & Lu, L. (2011). Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Research, 4(6), 550–562.

    Article  CAS  Google Scholar 

  • Venkatesha, T. G., Viswanatha, R., Arthoba Nayaka, Y., & Chethana, B. K. (2012). Kinetics and thermodynamics of reactive and vat dyes adsorption on MgO nanoparticles. Chemical Engineering Journal, 198–199, 1–10.

    Article  Google Scholar 

  • Wang, Y., & Chu, W. (2011). Adsorption and removal of a xanthene dye from aqueous solution using two solid wastes as adsorbents. Industrial & Engineering Chemistry Research, 50(14), 8734–8741.

    Article  CAS  Google Scholar 

  • Weber, C. T., Foletto, E. L., & Meili, L. (2013). Removal of tannery dye from aqueous solution using papaya seed as an efficient natural biosorbent. Water, Air, & Soil Pollution, 224, 1427–1438.

    Article  Google Scholar 

  • Xu, Y., Zhou, M., Geng, H. J., Hao, J. J., Ou, Q. Q., Qi, S. D., et al. (2012). A simplified method for synthesis of Fe3O4@PAA nanoparticles and its application for the removal of basic dyes. Applied Surface Science, 258(8), 3897–3902.

    Article  CAS  Google Scholar 

  • Zhang, Y. R., Wang, S. Q., Shen, S. L., & Zhao, B. X. (2013). A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition. Chemical Engineering Journal, 233, 258–264.

    Article  CAS  Google Scholar 

  • Zhou, L., Gao, C., & Xu, W. (2010). Magnetic dendritic materials for highly efficient adsorption of dyes and drugs. ACS Applied Materials & Interfaces, 2(5), 1483–1491.

    Article  CAS  Google Scholar 

  • Zhou, L., Jin, J., Liu, Z., Liang, X., & Shang, C. (2011). Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. Journal of Hazardous Materials, 185(2–3), 1045–1052.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants 21106101) and the Tianjin Natural Science Foundation (12JCZDJC29500, 13JCQNJC06300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Feng Huang or Ji-Mei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, QS., Huang, YF., Li, Y. et al. Functionalized Magnetic Microparticles for Fast and Efficient Removal of Textile Dyes from Aqueous Solution. Water Air Soil Pollut 225, 1950 (2014). https://doi.org/10.1007/s11270-014-1950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1950-9

Keywords

Navigation