Skip to main content
Log in

Biosurfactant in Membrane Separation of Atrazine from Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We present the study of atrazine, the pesticide separation using the typical thin film composite (TFC) membranes, made up of polyamide formation between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC) on the polysulfone membrane matrix. The unreacted acyl moieties in TFC membranes are chiefly responsible for the preferential rejection of bivalent counter ion (SO4 =) due to their residual charges compared to monovalent (Cl) ion. These two low-pressure-driven membranes show the similar trend as salt and organic markers. Changing the feed matrix is also an interesting direction to improve the performance apart from choosing the membrane. This approach sheds light on the separation behaviour with the addition of biosurfactant. Biosurfactant-mediated filtration showed better performance of the membranes, though it depends on the nature of membranes. The membranes having more porous (in terms of organic markers) structure showed improvement in separation of atrazine. The increase in separation 20.29 % is observed for 200 mg/L biosurfactant for Memb-I, whereas 13.81 % increase is observed for Memb-II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asai, S., Majumdar, S., Gupta, A., Kargupta, K., & Ganguly, S. (2009). Dynamics and pattern formation in thermally induced phase separation of polymer–solvent system. Computational Material Science, 47, 193–205.

    Article  CAS  Google Scholar 

  • Azari, S., Karimi, M., & Kish, M. H. (2010). Structural properties of the poly(acrylonitrile) membrane prepared with different cast thicknesses. Industrial and Engineering Chemistry Research, 49, 2442–2448.

    Article  CAS  Google Scholar 

  • Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Potential commercial applications of microbial surfactants. Applied Microbiology Biotechnology, 53, 495–508.

    Article  CAS  Google Scholar 

  • Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchaia, L., et al. (2010). Microbial biosurfactants production, applications and future potential. Applied Microbiology Biotechnology, 87, 427–444.

    Article  CAS  Google Scholar 

  • Bhattacharya, A., & Ghosh, P. (2004). Nanofiltration and reverse osmosis membrane: theory and application in separation of electrolytes. Reviews in Chemical Engineering, 20(1–2), 111–180.

    CAS  Google Scholar 

  • Bhattacharya, A. (2006). Remediation of pesticides polluted waters through membranes. Separation and Purification Reviews, 35, 1–38.

    Article  CAS  Google Scholar 

  • Bhattacharya, A., Ray, P., Brahmbhatt, H., Vyas, K. N., Joshi, S. V., Devmurari, C. V., et al. (2006b). Pesticides removal performance by low-pressure reverse osmosis membranes. Journal of Applied Polymer Science, 102, 3575–3579.

    Article  CAS  Google Scholar 

  • Blanco, J. F., Sublet, J., Nguyen, Q. T., & Schaetzel, P. (2006). Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process. Journal of Membrane Science, 283, 27–37.

    Article  CAS  Google Scholar 

  • Cadotte, J. E. & Peterson R. J. in: A. F. Turbak (Ed). (1981). Thin film composite reverse osmosis membranes: origin, development, and recent advances in: Synthetic Membranes vol-1, Desalination, American Chemical Society, Washington, D.C.

  • Cammoetra, S. S., & Bollag, J. M. (2003). Biosurfactant enhanced bioremediation of polycyclic aromatic hydrocarbons. Critical Review Environmental Science and Technology, 30, 111–126.

    Article  Google Scholar 

  • Glater, J. (1998). The early history of reverse osmosis membrane development. Desalination, 117, 297–309.

    Article  CAS  Google Scholar 

  • Jain, R. M., Mody, K., Mishra, A., & Jha, B. (2012). Physicochemical characterization of biosurfactant and its potential to remove oil from soil and cotton cloth. Carbohydrate Polymers, 89(4), 1110–1116.

    Article  CAS  Google Scholar 

  • Kapantaidakis, G. C., Koops, G. H., & Wessling, M. (2002). Effect of spinning conditions on the structure and the gas permeation properties of high flux polyethersulfone—polyimide blend hollow fibers. Desalination, 144, 121–125.

    Article  CAS  Google Scholar 

  • Kiso, Y., Nishimura, Y., Kitao, T., & Nishimura, K. (2000). Rejection properties of non-phenylic pesticides with nanofiltration membranes. Journal of Membrane Science, 171, 229–237.

    Article  CAS  Google Scholar 

  • Kosaric, N. (1992). Biosurfactants in industry. Pure and Applied Chemistry, 64, 1731–1737.

    Article  CAS  Google Scholar 

  • Morgan, P. W. (1965). Condensation polymers: by interfacial and solution methods. NY: Interscience Publishers.

    Google Scholar 

  • Singh, A., Van Hamme, J. D., & Ward, O. P. (2007). Surfactants in microbiology and biotechnology: part 2. Applications aspects. Biotechnology Advances, 25, 99–121.

    Article  CAS  Google Scholar 

  • Van Hamme, J. D., Singh, A., & Ward, O. P. (2006). Surfactants in microbiology and biotechnology: part I. Physiological aspects. Biotechnology Advances, 24, 604–620.

    Article  Google Scholar 

  • Whang, L. M., Liu, P. W. G., Ma, C. C., & Cheng, S. S. (2008). Application of biosurfactant, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. Journal of Hazardous Materials, 151, 155–163.

    Article  CAS  Google Scholar 

  • Yogesh, Popat, K. M., Brahmbhatt, H., Ganguly, B., & Bhattacharya, A. (2008). Pentachlorophenol removal from water using surfactant enhanced filtration through low pressure reverse osmosis membranes. Journal of Hazardous Materials, 154, 426–431.

  • Zhang, Y., Van der Bruggen, B., Chen, G. X., Braeken, L., & Vanecasteele, C. (2004). Removal of pesticides by nanofiltration: effect of the water matrix. Separation and Purification Technology, 38(2), 163–172.

    Article  CAS  Google Scholar 

  • Zhao, W., Su, Y., Li, C., Shi, Q., Ning, X., & Jiang, Z. (2008). Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent. Journal of Membrane Science, 318, 405–412.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Science and Technology (Science and Engineering Research Board, India) for research support and the Council of Scientific and Industrial Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, M., Jain, R.M., Brahmbhatt, H. et al. Biosurfactant in Membrane Separation of Atrazine from Water. Water Air Soil Pollut 225, 1942 (2014). https://doi.org/10.1007/s11270-014-1942-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1942-9

Keywords

Navigation