Advertisement

Phytoremediation of Endosulfan Sulfate-Contaminated Soil by Single and Mixed Plant Cultivations

  • Khanitta Somtrakoon
  • Maleeya Kruatrachue
  • Hung Lee
Article

Abstract

The extent of endosulfan sulfate removal from soils by different planting pattern with sweet corn (Zea mays), cowpea (Vigna sinensis), and cucumber (Cucumis sativus) either cultivated alone or together was investigated in pot experiments. Endosulfan sulfate was removed to the greatest extent in the treatment in which sweet corn was grown alone; only 11.3 and 27.2 % of the initial endosulfan sulfate remained in rhizospheric and bulk soil, respectively, of sweet corn grown alone at day 60. Endosulfan sulfate was also removed from soil to a great extent in treatments where cucumber or cowpea was grown alone; only 30.3 and 38.8 % of endosulfan sulfate remained in their respective rhizospheric soil after 45 days. However, cucumber did not tolerate the toxicity of endosulfan sulfate well and died around 50–55 days when it was cultivated either alone or together with another plant. Cultivation of sweet corn and cowpea together was less effective in removing endosulfan sulfate from soil; about 41.7 and 52.3 % of endosulfan sulfate remained in their respective rhizospheric soils after 60 days. The results showed that single cultivation of the plants was the most efficient way to remediate endosulfan sulfate-contaminated soil in this study. Endosulfan sulfate was detected in both the root and shoot of plants but given the low levels found, bioaccumulation was judged to be a relatively minor factor in endosulfan sulfate removal from soil.

Keywords

Cowpea Cucumber Endosulfan sulfate Mixed plant cultivation Phytoremediation Sweet corn 

Notes

Acknowledgment

The authors acknowledge financial support from the Thailand Research Fund, Office of the Higher Education Commission and Mahasarakham University (Grant No. MRG5480030).

References

  1. Abaga, N. O. Z., Dousset, S., Munier-Lamy, C., & Billet, D. (2014). Effectiveness of vetiver grass (Vetiverria zizaniodes L. nash) for phytoremediation of endosulfan in two cotton soils from Burkina Faso. International Journal of Phytoremediation, 16, 95–108.CrossRefGoogle Scholar
  2. Awasthi, N., Ahuja, R., & Kumar, A. (2000). Factors influencing the degradation of soil applied endosulfan isomers. Soil Biology and Biochemistry, 32(11–12), 1697–1705.CrossRefGoogle Scholar
  3. Bhalerao, T. S., & Puranik, P. R. (2007). Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. International Journal of Biodeterioration and Biodegradation, 59, 315–321.CrossRefGoogle Scholar
  4. Boonyatumanond, R., Jaksakul, A., Puncharoen, P., & Tabucanon, M. S. (2002). Monitoring of organochlorine pesticides residues in green mussels (Perna viridis) from the coastal area of Thailand. Environmental Pollution, 119, 245–252.CrossRefGoogle Scholar
  5. Calvelo Pereira, R., Camps-Arbestain, M., Garrido, B. R., Macías, F., & Monterroso, C. (2006). Behavior of α-, β-, γ-, and δ-hexachlorocychlohexane in the soil-plant system of a contaminated site. Environmental Pollution, 144, 210–217.CrossRefGoogle Scholar
  6. Campbell, S., Arakaki, A. S., & Li, Q. X. (2009). Phytoremediation of heptachlor and heptachlor epoxide in soil by Cucurbitaceae. International Journal of Phytoremediation, 11, 28–38.CrossRefGoogle Scholar
  7. Castillo, J. M., Casas, J., & Romero, E. (2011). Isolation of an endosulfan-degrading bacterium from a coffee farm soil: persistence and inhibitory effect on its biological functions. Science of the Total Environment, 412–413, 20–27.CrossRefGoogle Scholar
  8. Chouychai, W., Tongkukiatkul, A., Upatham, S., Pokethitiyook, P., Kruatrachue, M., & Lee, H. (2012). Effect of corn plant on survival and phenanthrene degradation capacity of Pseudomonas sp. UG14Lr in two soils. International Journal of Phytoremediation, 14(6), 585–595.CrossRefGoogle Scholar
  9. Doong, R.-A., Peng, C.-K., Sun, Y.-C., & Liao, P.-L. (2002). Composition and distribution of organochlorine pesticides residues in surface sediments from the Wu-Shi River estuary, Taiwan. Marine Pollution Bulletin, 45, 246–253.CrossRefGoogle Scholar
  10. Fan, S., Li, P., Gong, Z., Ren, W., & He, N. (2008). Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L). Chemosphere, 71, 1593–1598.CrossRefGoogle Scholar
  11. Gaskin, S., Soole, K., & Bentham, R. (2008). Screening of Australian native grasses for rhizoremediation of aliphatic hydrocarbon-contaminated soil. International Journal of Phytoremediation, 10, 378–389.CrossRefGoogle Scholar
  12. Huang, X.-D., El-Alawi, Y., Penrose, D. M., Glick, B. R., & Greenberg, B. M. (2004). Response of three grass species to creosote during phytoremediation. Environmental Pollution, 130, 453–463.CrossRefGoogle Scholar
  13. Inui, H., Wakai, T., Gion, K., Kim, Y.-S., & Eun, H. (2008). Differential uptake for dioxin-like compounds by zucchini subspecies. Chemosphere, 73, 1602–1607.CrossRefGoogle Scholar
  14. Jidere, C. M., Akamigbo, F. O. R., & Ugwuanyi, J. O. (2012). Phytoremediation potentials of cowpea (Vigina unguiculata) and maize (Zea mays) for hydrocarbon degradation in organic and inorganic manure-amended tropical typic paleustults. International Journal of Phytoremediation, 14, 362–373.CrossRefGoogle Scholar
  15. Joseph, R., Reed, S., Jayachandran, K., Clark-Cuadrado, C., & Dunn, C. (2010). Endosulfan has no adverse effect on soil respiration. Agriculture, Ecosystem and Environment, 138, 181–188.CrossRefGoogle Scholar
  16. Kamei, I., Takagi, K., & Kondo, R. (2011). Degradation of endosulfan and endosulfan sulfate by white-rot fungus Tremetes hirsute. Journal of Wood Science, 57, 317–322.CrossRefGoogle Scholar
  17. Kataoka, R., & Takagi, K. (2013). Biodegradability and biodegradation pathways of endosulfan and endosulfan sulfate. Applied Microbiology and Biotechnology, 97(8), 3285–3292.CrossRefGoogle Scholar
  18. Kataoka, R., Takagi, K., & Sakakibara, F. (2011). Biodegradation of endosulfan by Mortieralla sp. W8 in soil: influence of different substrates on biodegradation. Chemosphere, 85, 548–552.CrossRefGoogle Scholar
  19. Kathpal, T. S., Singh, A., Dhankhar, J. S., & Singh, G. (1997). Fate of endosulfan in cotton soil under sub-tropical conditions of Northern India. Pesticide Science, 50, 21–27.CrossRefGoogle Scholar
  20. Kidd, P. S., Prieto-Fernández, A., Monterroso, C., & Acea, M. J. (2008). Rhizosphere microbial community and hexachlorocyclohexane degradative potential in contrasting plant species. Plant and Soil, 302, 233–247.CrossRefGoogle Scholar
  21. Kobayashi, T., Navarro, R. R., Tatsumi, K., & Iimura, Y. (2008). Influence of compost amendment on pyrene availability from artificially spiked soils to two subspecies of Cucurbita pepo. Science of the Total Environment, 404, 1–9.CrossRefGoogle Scholar
  22. Korade, D. L., & Fulekar, M. H. (2009). Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. Journal of Hazardous Materials, 172, 1344–1350.CrossRefGoogle Scholar
  23. Kwon, G.-S., Sohn, H.-Y., Shin, K.-S., Kim, E., & Seo, B.-I. (2005). Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. Applied Microbiology and Biotechnology, 67, 845–850.CrossRefGoogle Scholar
  24. Lee, S.-H., Lee, W.-S., Lee, C.-H., & Kim, J.-G. (2008). Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. Journal of Hazardous Materials, 153, 892–898.CrossRefGoogle Scholar
  25. Li, H., Sheng, G., Sheng, W., & Xu, O. (2002). Uptake of trifluralin and lindane from water by ryegrass. Chemosphere, 48, 355–341.Google Scholar
  26. Macková, M., Vrchotová, B., Francová, K., Sylvestre, M., Tomaniová, M., Lovecká, P., et al. (2007). Biotransformation of PCBs by plants and bacteria -consequences of plant-microbe interactions. European Journal of Soil Biology, 43, 233–241.CrossRefGoogle Scholar
  27. Maila, M. P., Randima, P., & Cloete, T. E. (2005). Multispecies and monoculture rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) from the soil. International Journal of Phytoremediation, 7, 87–98.CrossRefGoogle Scholar
  28. Matsumoto, E., Kawanaka, Y., Yun, S.-J., & Oyaizu, H. (2009). Bioremediation of the organochlorine pesticides, dieldrin and endrin, and their occurrence in the environment. Applied Microbiology and Biotechnology, 84, 205–216.CrossRefGoogle Scholar
  29. Migueal, A. S., Ravanel, P., & Raveton, M. (2013). A comparative study on the uptake and translocation of organochlorine by Phragmites australis. Journal of Hazardous Materials, 244–245, 60–69.CrossRefGoogle Scholar
  30. Mitton, F. M., Gonzalez, M., Peña, A., & Miglioranza, K. S. B. (2012). Effects of amendments on soil availability and phytoremediation potential of aged p,p-DDT, p,p-DDE and p,p-DDD residues by willow plants (Salix sp.). Journal of Hazardous Materials, 203–204, 62–68.Google Scholar
  31. Otani, T., & Seike, N. (2007). Rootstock control of fruit dieldrin concentration in grafted cucumber (Cucurmis sativus). Journal of Pesticides Science, 32(3), 235–242.CrossRefGoogle Scholar
  32. Pan, S.-w., Wei, S.-q., Xin, Y., & Cao, S.-x. (2008). The removal and remediation of phenanthrene and pyrene in soil by mixed cropping of alfalfa and rape. Agricultural Sciences in China, 7(11), 1355–1364.CrossRefGoogle Scholar
  33. Parrish, Z. D., White, J. C., Isleyen, M., Gent, M. P. N., Iannucci-Berger, W., Eiter, B. D., et al. (2006). Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere, 64, 609–618.CrossRefGoogle Scholar
  34. Pilon-Smith, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.CrossRefGoogle Scholar
  35. Poolpak, T., Pokethitiyook, P., Kruatrachue, M., Arjarasirikoon, U., & Thanwaniwat, N. (2008). Residue analysis of organochlorine pesticides in the Mae Klong river of Central Thailand. Journal of Hazardous Materials, 156, 230–239.CrossRefGoogle Scholar
  36. Ramírez-Sandoval, M., Melchor-Partida, G. N., Muňiz-Hernández, S., Girón-Pérez, M. I., Rojas-García, A. E., Medina-Díaz, I. M., et al. (2011). Phytoremediatory effect and growth of two species of Ocimum in endosulfan polluted soil. Journal of Hazardous Materials, 192, 388–392.Google Scholar
  37. Rao, D. M. R., & Murty, A. S. (1980). Persistence of endosulfan in soils. Journal of Agricultural and Food Chemistry, 28, 1099–1101.CrossRefGoogle Scholar
  38. Srivilas, P., & Jaidee, K. (2006). Organochlorine pesticide in sediment from the east coast of Thailand. Burapha Science Journal, 11, 26–39 (In Thai with English abstract).Google Scholar
  39. Stewart, D. K. R., & Cairns, K. G. (1974). Endosulfan persistence in soil and uptake by potato tubers. Journal of Agricultural and Food Chemistry, 22, 984–986.Google Scholar
  40. Sumith, J. A., Parkpian, P., & Leadprathom, N. (2009). Dredging influenced sediment toxicity of endosulfan and lindane on black tiger shrimp (Penaeus monodon Fabricius) in Chanthaburi River estuary in Thailand. International Journal of Sediment Research, 24, 455–464.CrossRefGoogle Scholar
  41. Suresh, B., Sherkhane, P. D., Kale, S., Eapen, S., & Ravishankar, G. A. (2005). Uptake and degradation of DDT by hairy root cultures of Cichorium intybus and Brassica juncea. Chemosphere, 61, 1288–1292.CrossRefGoogle Scholar
  42. Wang, Y., & Oyaizu, H. (2009). Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil. Journal of Hazardous Materials, 168, 760–764.CrossRefGoogle Scholar
  43. Wang, W., Meng, B., Lu, X., Liu, Y., & Tao, S. (2007). Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: a comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques. Analytica Chimica Acta, 602, 211–222.CrossRefGoogle Scholar
  44. Weber, J., Halsall, C. J., Muir, D., Teixeira, C., Small, J., Solomon, K., et al. (2010). Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Science of the Total Environment, 408, 2966–2984.CrossRefGoogle Scholar
  45. Wei, S., & Pan, S. (2010). Phytoremediation for soils contaminated by phenanthrene and pyrene with multiple plant species. Journal of Soils and Sediments, 10, 886–894.CrossRefGoogle Scholar
  46. Whitfield-Åslund, M. L. W., Zeeb, B. A., Rutter, A., & Reimer, K. J. (2007). In situ phytoextraction of polychlorinated biphenyl-(PCB) contaminated soil. Science of the Total Environment, 374, 1–12.CrossRefGoogle Scholar
  47. Whitfield-Åslund, M. L. W., Lunney, A. L., Rutter, A., & Zeeb, B. A. (2010). Effects of amendments on the uptake and distribution of DDT in Cucurbita pepo spp. pepo plants. Environmental Pollution, 158, 508–513.CrossRefGoogle Scholar
  48. Xu, S. Y., Chen, Y. X., Wu, W. X., Wang, K. X., Lin, Q., & Liang, X. Q. (2006). Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plant cultivation. Science of the Total Environment, 363, 206–215.CrossRefGoogle Scholar
  49. Xu, L., Teng, Y., Li, Z.-G., Norton, J. M., & Luo, Y.-M. (2010). Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of rhizobial inoculum. Science of the Total Environment, 408, 1007–1013. http://chm.pops.int/Convention/Media/Pressreleases/Widelyusedpesticideendosulfanphaseout/tabid/2216/language/en-US/Default.aspx. Accessed 9 Jun 2013.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Khanitta Somtrakoon
    • 1
  • Maleeya Kruatrachue
    • 2
  • Hung Lee
    • 3
  1. 1.Department of Biology, Faculty of ScienceMahasarakham UniversityKantharawichaiThailand
  2. 2.Department of Biology, Faculty of ScienceMahidol UniversityBangkokThailand
  3. 3.School of Environmental SciencesUniversity of GuelphGuelphCanada

Personalised recommendations