Trends in Surface Water Chemistry in Acidified Areas in Europe and North America from 1990 to 2008

  • Øyvind A. Garmo
  • Brit Lisa Skjelkvåle
  • Heleen A. de Wit
  • Luca Colombo
  • Chris Curtis
  • Jens Fölster
  • Andreas Hoffmann
  • Jakub Hruška
  • Tore Høgåsen
  • Dean S. Jeffries
  • W. Bill Keller
  • Pavel Krám
  • Vladimir Majer
  • Don T. Monteith
  • Andrew M. Paterson
  • Michela Rogora
  • Dorota Rzychon
  • Sandra Steingruber
  • John L. Stoddard
  • Jussi Vuorenmaa
  • Adam Worsztynowicz
Article

Abstract

Acidification of lakes and rivers is still an environmental concern despite reduced emissions of acidifying compounds. We analysed trends in surface water chemistry of 173 acid-sensitive sites from 12 regions in Europe and North America. In 11 of 12 regions, non-marine sulphate (SO4*) declined significantly between 1990 and 2008 (−15 to −59 %). In contrast, regional and temporal trends in nitrate were smaller and less uniform. In 11 of 12 regions, chemical recovery was demonstrated in the form of positive trends in pH and/or alkalinity and/or acid neutralising capacity (ANC). The positive trends in these indicators of chemical recovery were regionally and temporally less distinct than the decline in SO4* and tended to flatten after 1999. From an ecological perspective, the chemical quality of surface waters in acid-sensitive areas in these regions has clearly improved as a consequence of emission abatement strategies, paving the way for some biological recovery.

Keywords

Acid deposition Surface waters Trend analysis Monitoring network Chemical recovery 

Supplementary material

11270_2014_1880_MOESM1_ESM.docx (25 kb)
ESM 1(DOCX 24 kb)

References

  1. Alewell, C., Armbruster, M., Bittersohl, J., Evans, C. D., Meesenburg, H., Moritz, K., et al. (2001). Are there signs of acidification reversal in freshwaters of the low mountain ranges in Germany? Hydrology and Earth System Sciences Discussions, 5(3), 367–378.CrossRefGoogle Scholar
  2. Battarbee, R. W., Monteith, D. T., Juggins, S., Evans, C. D., Jenkins, A., & Simpson, G. L. (2005). Reconstructing pre-acidification pH for an acidified Scottish loch: a comparison of palaeolimnological and modelling approaches. Environmental Pollution, 137(1), 135–149.CrossRefGoogle Scholar
  3. Brooks, P. D., Campbell, D. H., Tonnessen, K. A., & Heuer, K. (1999). Natural variability in N export from headwater catchments: snow cover controls on ecosystem N retention. Hydrological Processes, 13(14–15), 2191–2201.CrossRefGoogle Scholar
  4. Brookshire, E. N. J., Gerber, S., Webster, J. R., Vose, J. M., & Swank, W. T. (2011). Direct effects of temperature on forest nitrogen cycling revealed through analysis of long-term watershed records. Global Change Biology, 17(1), 297–308.CrossRefGoogle Scholar
  5. Church, M., Shaffer, P., Eshleman, K., & Rochelle, B. (1990). Potential future effects of current levels of sulfur deposition on stream chemistry in the southern Blue Ridge mountains, U.S. Water, Air, & Soil Pollution, 50(1), 39–48.Google Scholar
  6. Clark, J. M., Bottrell, S. H., Evans, C. D., Monteith, D. T., Bartlett, R., Rose, R., et al. (2010). The importance of the relationship between scale and process in understanding long-term DOC dynamics. The Science of the Total Environment, 408(13), 2768–2775.CrossRefGoogle Scholar
  7. Curtis, C. J., Evans, C. D., Helliwell, R. C., & Monteith, D. T. (2005). Nitrate leaching as a confounding factor in chemical recovery from acidification in UK upland waters. Environmental Pollution, 137(1), 73–82.CrossRefGoogle Scholar
  8. Curtis, C. J., Evans, C. D., Goodale, C. L., & Heaton, T. H. E. (2011). What have stable isotope studies revealed about the nature and mechanisms of N saturation and nitrate leaching from semi-natural catchments? Ecosystems, 14(6), 1021–1037.CrossRefGoogle Scholar
  9. Curtis, C. J., & Simpson, G. L. (2014). Trends in bulk deposition of acidity in the UK, 1988–2007, assessed using additive models. Ecological Indicators, 37, 274–286. Part B.CrossRefGoogle Scholar
  10. De Wit, H. A., Hindar, A., & Hole, L. (2008). Winter climate affects long-term trends in stream water nitrate in acid-sensitive catchments in southern Norway. Hydrology and Earth System Sciences Discussions, 12(2), 393–403.CrossRefGoogle Scholar
  11. Driscoll, C. T., Driscoll, K. M., Roy, K. M., & Dukett, J. (2007). Changes in the chemistry of lakes in the Adirondack region of New York following declines in acidic deposition. Applied Geochemistry, 22(6), 1181–1188.CrossRefGoogle Scholar
  12. Driscoll, C. T., Lehtinen, M. D., & Sullivan, T. J. (1994). Modeling the acid–base chemistry of organic solutes in Adirondack, New York, lakes. Water Resources Research, 30(2), 297–306.CrossRefGoogle Scholar
  13. Erlandsson, M., Cory, N., Fölster, J., Köhler, S., Laudon, H., Weyhenmeyer, G. A., et al. (2011). Increasing dissolved organic carbon redefines the extent of surface water acidification and helps resolve a classic controversy. BioScience, 61(8), 614–618.CrossRefGoogle Scholar
  14. Erlandsson, M., Cory, N., Köhler, S., & Bishop, K. (2010). Direct and indirect effects of increasing dissolved organic carbon levels on pH in lakes recovering from acidification. Journal of Geophysical Research, 115, 8.CrossRefGoogle Scholar
  15. Eshleman, K. N., Morgan, R. P., Webb, J. R., Deviney, F. A., & Galloway, J. N. (1998). Temporal patterns of nitrogen leakage from mid-Appalachian forested watersheds: role of insect defoliation. Water Resources Research, 34(8), 2005–2016.CrossRefGoogle Scholar
  16. Evans, C. D., Harriman, R., Monteith, D. T., & Jenkins, A. (2001a). Assessing the suitability of acid neutralising capacity as a measure of long-term trends in acidic waters based on two parallel datasets. Water, Air, and Soil Pollution, 130(1–4), 1541–1546.CrossRefGoogle Scholar
  17. Evans, C. D., Monteith, D. T., & Harriman, R. (2001b). Long-term variability in the deposition of marine ions at west coast sites in the UK Acid Waters Monitoring Network: impacts on surface water chemistry and significance for trend determination. The Science of the Total Environment, 265(1–3), 115–129.CrossRefGoogle Scholar
  18. Fischer, R., Mues, V., Ulrich, E., Becher, G., & Lorenz, M. (2007). Monitoring of atmospheric deposition in European forests and an overview on its implication on forest condition. Applied Geochemistry, 22(6), 1129–1139.CrossRefGoogle Scholar
  19. Galloway, J. N., Norton, S. A., & Church, M. R. (1983). Freshwater acidification from atmospheric deposition of sulfuric acid: a conceptual model. Environmental Science & Technology, 17(11), 541A–545A.CrossRefGoogle Scholar
  20. Haines, T. A., & Baker, J. P. (1986). Evidence of fish population responses to acidification in the Eastern United States. Water, Air, & Soil Pollution, 31(3), 605–629.CrossRefGoogle Scholar
  21. Helsel, D. R., & Frans, L. M. (2006). Regional Kendall test for trend. Environmental Science & Technology, 40(13), 4066–4073.CrossRefGoogle Scholar
  22. Hirsch, R. M., & Slack, J. R. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20(6), 727–732.CrossRefGoogle Scholar
  23. Hovind, H. (2010). Intercomparison 1024: pH, Cond, HCO3, NO3-N, CI, SO4, Ca, Mg, Na, K, TOC, Al, Fe, Mn, Cd, Pb, Cu, Ni, and Zn (Report No. 6029) (p. 75). Oslo: Norsk institutt for vannforskning (NIVA).Google Scholar
  24. Hruška, J., Krám, P., McDowell, W. H., & Oulehle, F. (2009). Increased dissolved organic carbon (DOC) in central European streams is driven by reductions in ionic strength rather than climate change or decreasing acidity. Environmental Science & Technology, 43(12), 4320–4326.CrossRefGoogle Scholar
  25. Jenkins, A., Camarero, L., Cosby, B. J., Ferrier, R. C., Forsius, M., Helliwell, R. C., et al. (2003). A modelling assessment of acidification and recovery of European surface waters. Hydrology and Earth System Sciences Discussions, 7(4), 447–455.CrossRefGoogle Scholar
  26. Kvaeven, B., Ulstein, M., Skjelkvåle, B. L., Raddum, G. G., & Hovind, H. (2001). ICP Waters — an International Programme for Surface Water Monitoring. Water, Air, & Soil Pollution, 130(1), 775–780.CrossRefGoogle Scholar
  27. Lawrence, G. B., Simonin, H. A., Baldigo, B. P., Roy, K. M., & Capone, S. B. (2011). Changes in the chemistry of acidified Adirondack streams from the early 1980s to 2008. Environmental Pollution, 159(10), 2750–2758.CrossRefGoogle Scholar
  28. Lepori, F., & Keck, F. (2012). Effects of atmospheric nitrogen deposition on remote freshwater ecosystems. Ambio, 41(3), 235–246.CrossRefGoogle Scholar
  29. Likens, G. E., Wright, R. F., Galloway, J. N., & Butler, T. J. (1979). Acid rain. Scientific American, 241(4), 43–51.CrossRefGoogle Scholar
  30. Lyman, J., & Fleming, R. H. (1940). Composition of seawater. Journal of Marine Research, 3, 134–146.Google Scholar
  31. Matzner, E., & Murach, D. (1995). Soil changes induced by air pollutant deposition and their implication for forests in central Europe. Water, Air, & Soil Pollution, 85(1), 63–76.CrossRefGoogle Scholar
  32. Mitchell, M., Lovett, G., Bailey, S., Beall, F., Burns, D., Buso, D., et al. (2011). Comparisons of watershed sulfur budgets in southeast Canada and northeast US: new approaches and implications. Biogeochemistry, 103(1), 181–207.CrossRefGoogle Scholar
  33. Moldan, F., Kjønaas, O. J., Stuanes, A. O., & Wright, R. F. (2006). Increased nitrogen in runoff and soil following 13 years of experimentally increased nitrogen deposition to a coniferous-forested catchment at Gårdsjön, Sweden. Environmental Pollution, 144(2), 610–620.CrossRefGoogle Scholar
  34. Monteith, D. T., Evans, C. D., Henrys, P. A., Simpson, G. L., & Malcolm, I. A. (2014). Trends in the hydrochemistry of acid-sensitive surface waters in the UK 1988–2008. Ecological Indicators, 37, 287–303. Part B.CrossRefGoogle Scholar
  35. Monteith, D. T., Evans, C. D., & Reynolds, B. (2000). Are temporal variations in the nitrate content of UK upland freshwaters linked to the North Atlantic Oscillation? Hydrological Processes, 14(10), 1745–1749.CrossRefGoogle Scholar
  36. Monteith, D. T., Stoddard, J. L., Evans, C. D., De Wit, H. A., Forsius, M., Hogasen, T., et al. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450(7169), 537–540.CrossRefGoogle Scholar
  37. Newell, A., & Skjelkvåle, B. L. (1997). Acidification trends in surface waters in the international program on acidification of rivers and lakes. Water, Air, & Soil Pollution, 93(1), 27–57.Google Scholar
  38. Oulehle, F., Chuman, T., Majer, V., & Hruška, J. (2013). Chemical recovery of acidified Bohemian lakes between 1984 and 2012: the role of acid deposition and bark beetle induced forest disturbance. Biogeochemistry, 116(1–3), 83–101.CrossRefGoogle Scholar
  39. Oulehle, F., McDowell, W. H., Aitkenhead-Peterson, J. A., Krám, P., Hruška, J., Navrátil, T., et al. (2008). Long-term trends in stream nitrate concentrations and losses across watersheds undergoing recovery from acidification in the Czech Republic. Ecosystems, 11(3), 410–425.CrossRefGoogle Scholar
  40. Phoenix, G. K., Emmett, B. A., Britton, A. J., Caporn, S. J. M., Dise, N. B., Helliwell, R., et al. (2012). Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Global Change Biology, 18(4), 1197–1215.CrossRefGoogle Scholar
  41. Prechtel, A., Alewell, C., Armbruster, M., Bittersohl, J., Cullen, J. M., Evans, C. D., et al. (2001). Response of sulphur dynamics in European catchments to decreasing sulphate deposition. Hydrology and Earth System Sciences Discussions, 5(3), 311–326.CrossRefGoogle Scholar
  42. Rogora, M., Mosello, R., & Arisci, S. (2003). The effect of climate warming on the hydrochemistry of Alpine Lakes. Water, Air, and Soil Pollution, 148(1–4), 347–361.CrossRefGoogle Scholar
  43. Rogora, M., Mosello, R., & Marchetto, A. (2004). Long-term trends in the chemistry of atmospheric deposition in Northwestern Italy: the role of increasing Saharan dust deposition. Tellus, 56B(5), 426–434.CrossRefGoogle Scholar
  44. Rogora, M., Arisci, S., & Marchetto, A. (2012). The role of nitrogen deposition in the recent nitrate decline in lakes and rivers in Northern Italy. The Science of the Total Environment, 417–418, 214–223.CrossRefGoogle Scholar
  45. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389.CrossRefGoogle Scholar
  46. Skjelkvåle, B. L., Stoddard, J. L., Jeffries, D. S., Tørseth, K., Høgåsen, T., Bowman, J., et al. (2005). Regional scale evidence for improvements in surface water chemistry 1990–2001. Environmental Pollution, 137(1), 165–176.CrossRefGoogle Scholar
  47. Skjelkvåle, B. L., Stoddard, J. L., & Andersen, T. (2001). Trends in surface water acidification in Europe and North America (1989–1998). Water, Air, & Soil Pollution, 130(1), 787–792.CrossRefGoogle Scholar
  48. Stevens, C. J., Gowing, D. J. G., Wotherspoon, K. A., Alard, D., Aarrestad, P. A., Bleeker, A., et al. (2011). Addressing the impact of atmospheric nitrogen deposition on Western European grasslands. Environmental Management, 48(5), 885–894.CrossRefGoogle Scholar
  49. Stoddard, J. L., Jeffries, D. S., Lukewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T., et al. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 401(6753), 575–578.CrossRefGoogle Scholar
  50. Stoddard, J. L., Traaen, T., & Skjelkvåle, B. L. (2001). Assessment of nitrogen leaching at ICP-Waters sites (Europe and North America). Water, Air, & Soil Pollution, 130(1), 781–786.CrossRefGoogle Scholar
  51. Stoddard, J. L., Kahl, J. S., Deviney, F. A., DeWalle, D. R., Driscoll, C. T., Herlihy, A. T., et al. (2003). Response of Surface Water Chemistry to the Clean Air Act Amendments of 1990 (No. EPA 620/R-03/001) (p. 78). United States Environmental Protection Agency (US EPA).Google Scholar
  52. Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., et al. (2012). Introduction to the European Monitoring And Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmospheric Chemistry and Physics, 12(12), 5447–5481.CrossRefGoogle Scholar
  53. Waller, K., Driscoll, C. T., Lynch, J., Newcomb, D., & Roy, K. (2012). Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition. Atmospheric Environment, 46, 56–64.CrossRefGoogle Scholar
  54. Wright, R. F., Larssen, T., Camarero, L., Cosby, B. J., Ferrier, R. C., Helliwell, R., et al. (2005). Recovery of acidified European surface waters. Environmental Science & Technology, 39(3), 64A–72A.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Øyvind A. Garmo
    • 1
  • Brit Lisa Skjelkvåle
    • 2
  • Heleen A. de Wit
    • 2
  • Luca Colombo
    • 3
  • Chris Curtis
    • 4
  • Jens Fölster
    • 5
  • Andreas Hoffmann
    • 6
  • Jakub Hruška
    • 7
    • 8
  • Tore Høgåsen
    • 2
  • Dean S. Jeffries
    • 9
  • W. Bill Keller
    • 10
  • Pavel Krám
    • 7
  • Vladimir Majer
    • 7
  • Don T. Monteith
    • 11
  • Andrew M. Paterson
    • 12
  • Michela Rogora
    • 13
  • Dorota Rzychon
    • 14
  • Sandra Steingruber
    • 15
  • John L. Stoddard
    • 16
  • Jussi Vuorenmaa
    • 17
  • Adam Worsztynowicz
    • 14
  1. 1.Norwegian Institute for Water Research (NIVA)OttestadNorway
  2. 2.Norwegian Institute for Water Research (NIVA)OsloNorway
  3. 3.University of Applied Sciences of Southern SwitzerlandCanobbioSwitzerland
  4. 4.GAESUniversity of the WitwatersrandJohannesburgSouth Africa
  5. 5.Swedish University of Agricultural SciencesUppsalaSweden
  6. 6.UmweltbundesamtDessauGermany
  7. 7.Czech Geological SurveyPragueCzech Republic
  8. 8.Global Change Research Centre, Academy of Sciences of the Czech RepublicBrnoCzech Republic
  9. 9.Environment CanadaBurlingtonCanada
  10. 10.Laurentian UniversitySudburyCanada
  11. 11.NERC Centre for Ecology & Hydrology, Lancaster Environment CentreLancasterUnited Kingdom
  12. 12.Ontario Ministry of EnvironmentDorsetCanada
  13. 13.CNR Institute of Ecosystem StudyVerbania PallanzaItaly
  14. 14.Institute for Ecology of Industrial AreasKatowicePoland
  15. 15.Ufficio aria, clima e energie rinnovabiliBellinzonaSwitzerland
  16. 16.US Environmental Protection AgencyCorvallisUSA
  17. 17.Finnish Environment InstituteHelsinkiFinland

Personalised recommendations