Abstract
Ombrotrophic peatlands are highly sensitive to atmospheric heavy metal deposition. Previous attempts to quantify peatland lead pollution have been undertaken using the inventory approach. However, there can be significant within-site spatial heterogeneity in lead concentrations, highlighting the need for multiple samples to properly quantify lead storage. Field portable x-ray fluorescence (FPXRF) continues to gain acceptance in the study of contaminated soil, but has not thus far been used to assess peatland lead contamination. This study compares lead concentrations in surface peat samples from the South Pennines (UK) derived using (a) FPXRF in the field, (b) FPXRF in the lab on dried samples and (c) ICP-OES analysis. FPXRF field and lab data are directly comparable when field measurements are corrected for water content, both can be easily used to estimate acid extractable lead using regression equations. This study is a successful demonstration of FPXRF as a tool for a time- and cost-effective means of determining the lead content of contaminated peatlands, which will allow rapid landscape scale reconnaissance, core logging, surface surveys and sediment tracing.
This is a preview of subscription content, access via your institution.




References
Argyraki, A., Ramsey, M. H., & Potts, P. J. (1997). Evaluation of portable X-ray fluorescence instrumentation for in situ measurements of lead on contaminated land. Analyst, 122(8), 743–749.
Bernick, M. B., Kalnicky, D. J., Prince, G., & Singhvi, R. (1995). Results of field-portable X-ray-fluorescence analysis of metal contaminants in soil and sediment. Journal of Hazardous Materials, 43(1–2), 101–110.
Bindler, R., Klarqvist, M., Klaminder, J., & Forster, J. (2004). Does within-bog spatial variability of mercury and lead constrain reconstructions of absolute deposition rates from single peat records? The example of Store Mosse, Sweden. Global Biogeochemical Cycles, 18(3).
Block, C. N., Shibata, T., Solo-Gabriele, H. M., & Townsend, T. G. (2007). Use of handheld X-ray fluorescence spectrometry units for identification of arsenic in treated wood. Environmental Pollution, 148(2), 627–633.
Bonn, A., Allott, T. E. H., Hubacek, K., & Stewart, J. (2009). Drivers of environmental change in uplands. Abingdon: Routledge.
Bower, M. M. (1960). The erosion of blanket peat in the Southern Pennines. East Midlands Geogr, 2(13), 22–33.
Bower, M. M. (1961). The distribution of erosion in blanket peat bogs in the Pennines. Transactions of the Institute of British Geographers, 29, 17–30.
Boyle, J. F. (2000). Rapid elemental analysis of sediment samples by isotope source XRF. Journal of Paleolimnology, 23(2), 213–221.
Brännvall, M.-L., Bindler, R., Emteryd, O., & Renberg, I. (2001). Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments. Journal of Paleolimnology, 25, 421–435.
Clark, S., Menrath, W., Chen, M., Roda, S., & Succop, P. (1999). Use of a field portable X-Ray fluorescence analyzer to determine the concentration of lead and other metals in soil samples. Annals of Agricultural and Environmental Medicine: AAEM, 6(1), 27–32.
Dawson, J. J. C., Tetzlaff, D., Carey, A. M., Raab, A., Soulsby, C., Killham, K., & Meharg, A. A. (2010). Characterizing Pb mobilization from upland soils to streams using Pb-206/Pb-207 isotopic ratios. Environmental Science and Technology, 44(1), 243–249.
De Vleeschouwer, F., Gerard, L., Goormaghtigh, C., Mattielli, N., Le Roux, G., & Fagel, N. (2007). Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millenia: Human impact on a regional to global scale. Science of the Total Environment, 377(2–3), 282–295.
EAG (2007). ICP-OES and ICP-MS Detection Limit Guidance [Online]. http://www.eaglabs.com/documents/icp-oes-ms-detection-limit-guidance-BR023.pdf. Accessed 20 Feb 2013
Ebdon, D. (1985). Statistics in geography: a practical approach—revised with 17 programs. Oxford: Blackwell.
Farmer, J. G., Graham, M. C., Bacon, J. R., Dunn, S. M., Vinogradoff, S. I., & MacKenzie, A. B. (2005). Isotopic characterisation of the historical lead deposition record at Glensaugh, an organic-rich, upland catchment in rural NE Scotland. Science of the Total Environment, 346(1–3), 121–137.
Ge, L. Q., Lai, W. C., & Lin, Y. C. (2005). Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis. X-Ray Spectrometry, 34(1), 28–34.
Hong, S. M., Candelone, J.-P., Patterson, C. C., & Boutron, C. F. (1994). Greenland ice evidence of hemispheric lead pollution 2 millennia ago by Greek and Roman civilizations. Science, 265, 1841–1843.
Hou, X. D., He, Y. H., & Jones, B. T. (2004). Recent advances in portable X-ray fluorescence spectrometry. Applied Spectroscopy Reviews, 39(1), 1–25.
Hürkamp, K., Raab, T., & Völkel, J. (2009a). Lead pollution of floodplain soils in a historic mining area—age, distribution and binding forms. Water, Air, and Soil Pollution, 201(1–4), 331–345.
Hürkamp, K., Raab, T., & Völkel, J. (2009b). Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field portable X-ray fluorescence (FPXRF) analysis. Geomorphology, 110, 28–36.
Jones, J. M., & Hao, J. (1993). Ombrotrophic peat as a medium for historical monitoring of heavy-metal pollution. Environmental Geochemistry and Health, 15(2–3), 67–74.
Kalnicky, D. J., & Singhvi, R. (2001). Field portable XRF analysis of environmental samples. Journal of Hazardous Materials, 83(1–2), 93–122.
Kempter, H., & Frenzel, B. (2000). The impact of early mining and smelting on the local tropospheric aerosol detected in ombrotrophic peat bogs in the Harz, Germany. Water, Air, and Soil Pollution, 121(1–4), 93–108.
Kilbride, C., Poole, J., & Hutchings, T. R. (2006). A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses. Environmental Pollution, 143(1), 16–23.
Komarek, M., Chrastny, V., Ettler, V., & Tlustos, P. (2006). Evaluation of extraction/digestion techniques used to determine lead isotopic composition in forest soils. Analytical and Bioanalytical Chemistry, 385(6), 1109–1115.
Le Roux, G., & De Vleeschouwer, F. (2010/11). Preparation of peat samples for inorganic geochemistry used as palaeoenvironmental proxies. Mires and Peat, 7, 1–9.
Lee, J. A., & Tallis, J. H. (1973). Regional and historical aspects of lead pollution in Britain. Nature, 245(5422), 216–218.
Livett, E. A., Lee, J. A., & Tallis, J. H. (1979). Lead, zinc and copper analyses of British blanket peats. Journal of Ecology, 67(3), 865–891.
Lowemark, L., Chen, H. F., Yang, T. N., Kylander, M., Yu, E. F., Hsu, Y. W., Lee, T. Q., Song, S. R., & Jarvis, S. (2011). Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes. Journal of Asian Earth Sciences, 40(6), 1250–1256.
MacKenzie, A. B., Logan, E. M., Cook, G. T., & Pulford, I. D. (1998). Distributions, inventories and isotopic composition of lead in Pb-210-dated peat cores from contrasting biogeochemical environments: Implications for lead mobility. Science of the Total Environment, 223(1), 25–35.
Makinen, E., Korhonen, M., Viskari, E. L., Haapamaki, S., Jarvinen, M., & Lu, L. (2006). Comparison of XRF and FAAS methods in analysing CCA contaminated soils. Water, Air, and Soil Pollution, 171(1–4), 95–110.
Markert, B., & Thornton, I. (1990). Multielement analysis of an English peat bog soil. Water, Air, and Soil Pollution, 49(1–2), 113–123.
Martin Peinado, F., Morales Ruano, S., Bagur Gonzalez, M. G., & Estepa Molina, C. (2010). A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF). Geoderma, 159(1–2), 76–82.
Marx, S. K., Kamber, B. S., McGowan, H. A., & Zawadzki, A. (2010). Atmospheric pollutants in alpine peat bogs record a detailed chronology of industrial and agricultural development on the Australian continent. Environmental Pollution, 158(5), 1615–1628.
Mihaljevic, M., Zuna, M., Ettler, V., Sebek, O., Strnad, L., & Golias, V. (2006). Lead fluxes, isotopic and concentration profiles in a peat deposit near a lead smelter (Pribram, Czech Republic). Science of the Total Environment, 372(1), 334–344.
Monna, F., Galop, D., Carozza, L., Tual, M., Beyrie, A., Marembert, F., Chateau, C., Dominik, J., & Grousset, F. (2004). Environmental impact of early Basque mining and smelting recorded in a high ash minerogenic peat deposit. Science of the Total Environment, 327(1–3), 197–214.
Murozumi, M., Chow, T. J., & Patterson, C. C. (1969). Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochimica et Cosmochimica Acta, 33, 1247–1294.
Novak, M., Emmanuel, S., Vile, M. A., Erel, Y., Veron, A., Paces, T., Wieder, R. K., Vanecek, M., Stepanova, M., Brizova, E., & Hovorka, J. (2003). Origin of lead in eight central European peat bogs determined from isotope ratios, strengths, and operation times of regional pollution sources. Environmental Science and Technology, 37(3), 437–445.
Novak, M., Zemanova, L., Voldrichova, P., Stepanova, M., Adamova, M., Pacherova, P., Komarek, A., Krachler, M., & Prechova, E. (2011). Experimental evidence for mobility/immobility of metals in peat. Environmental Science and Technology, 45(17), 7180–7187.
Perkin Elmer (2011). Atomic spectroscopy: a guide to selecting the appropriate technique and system. http://www.perkinelmer.co.uk/PDFs/Downloads/BRO_WorldLeaderAAICPMSICPMS.pdf. Accessed 20 Feb 2013
Raab, T,. Hürkamp, K., Völkel, J. (2005). Detection and quantification of heavy metal contamination in alluvial soils of historic mining areas by field portable X-ray fluorescence (FPXRF) analysis. In: Proceedings of International Conference on Problematic Soils 25-27 May 2005. Eastern Mediterranean University, Famagusta, N. Cyprus
Radu, T., & Diamond, D. (2009). Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. Journal of Hazardous Materials, 171(1–3), 1168–1171.
Renberg, I., Wik-Persson, M., & Emteryd, O. (1994). Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature, 368, 323–326.
Renberg, I., Bindler, R., & Brännvall, M.-L. (2001). Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe. The Holocene, 11(5), 511–516.
Ridings, M., Shorter, A. J., & Smith, J. B. (2000). Strategies for the investigation of contaminated sites using field portable X-ray fluorescence (FPXRF) techniques. Communications in Soil Science and Plant Analysis, 31(11–14), 1785–1790.
Rothwell, J. J., Robinson, S. G., Evans, M. G., Yang, J., & Allott, T. E. H. (2005). Heavy metal release by peat erosion in the Peak District, southern Pennines, UK. Hydrological Processes, 19(15), 2973–2989.
Rothwell, J. J., Evans, M. G., Lindsay, J. B., & Allott, T. E. H. (2007a). Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK. Environmental Pollution, 145(1), 111–120.
Rothwell, J. J., Evans, M. G., & Allott, T. E. H. (2007b). Lead contamination of fluvial sediments in an eroding blanket peat catchment. Applied Geochemistry, 22(2), 446–459.
Rothwell, J. J., Evans, M. G., Daniels, S. A., & Allott, T. E. H. (2008). Peat soils as a source of lead contamination to upland fluvial systems. Environmental Pollution, 153(3), 582–589.
Rothwell, J. J., Taylor, K. G., Chenery, S. R. N., Cundy, A. B., Evans, M. G., & Allottt, T. E. H. (2010a). Storage and behavior of As, Sb, Pb, and Cu in ombrotrophic peat bogs under contrasting water table conditions. Environmental Science and Technology, 44(22), 8497–8502.
Rothwell, J. J., Lindsay, J. B., Evans, M. G., & Allott, T. E. H. (2010b). Modelling suspended sediment lead concentrations in contaminated peatland catchments using digital terrain analysis. Ecological Engineering, 36(5), 623–630.
Shefsky, S. (1997). Comparing field portable x-ray fluorescence (XRF) to laboratory analysis of heavy metals in soil. http://www.clu-in.org/download/char/dataquality/sshefsky02.pdf. Accessed 14 Jan 2013
Shotbolt, L., Hutchinson, S., & Thomas, A. (2006). Sediment stratigraphy and heavy metal fluxes to reservoirs in the Southern Pennine Uplands, UK. Journal of Paleolimnology, 35(2), 305–322.
Shotyk, W., Weiss, D., Appleby, P. G., Cheburkin, A. K., Frei, R., Gloor, M., Kramers, J. D., Reese, S., & Van der Knaap, W. O. (1998). History of atmospheric lead deposition since 12,370 C-14 yr BP from a peat bog, Jura Mountains, Switzerland. Science, 281(5383), 1635–1640.
Shotyk, W., Blaser, P., Grunig, A., & Cheburkin, A. K. (2000). A new approach for quantifying cumulative, anthropogenic, atmospheric lead deposition using peal cores from bogs: Pb in eight Swiss peat bog profiles. Science of the Total Environment, 249(1–3), 281–295.
Shotyk, W., Goodsite, M. E., Roos-Barraclough, F., Frei, R., Heinemeier, J., Asmund, G., Lohse, C., & Hansen, T. S. (2003). Anthropogenic contributions to atmospheric Hg, Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C “bomb pulse curve”. Geochimica et Cosmochimica Acta, 67(21), 3991–4011.
Shuttleworth, E. L., Evans, M. G., Rothwell, J. J., & Hutchinson, S. M. (2012). Impacts of erosion and restoration on POC flux and pollutant mobilisation in the peatlands of the Peak District National Park, UK (EGU General Assembly 2012). Vienna: Austria.
Smith, E. J., Hughes, S., Lawlor, A. J., Lofts, S., Simon, B. M., Stevens, P. A., Stidson, R. T., Tipping, E., & Vincent, C. D. (2005). Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect. Environmental Pollution, 136(1), 11–18.
Solo-Gabriele, H. M., Townsend, T. G., Hahn, D. W., Moskal, T. M., Hosein, N., Jambeck, J., & Jacobi, G. (2004). Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste. Waste Management, 24(4), 413–424.
Sterling, D. A., Lewis, R. D., Luke, D. A., & Shadel, B. N. (2000). A portable x-ray fluorescence instrument for analyzing dust wipe samples for lead: evaluation with field samples. Environmental Research, 83(2), 174–179.
Stevenson, F. J. (1976). Stability-constants of Cu2+, Pb2+, and Cd2+ complexes with humic acids. Soil Science Society of America Journal, 40(5), 665–672.
Sturgeon, R. E. (2000). Current practice and recent developments in analytical methodology for trace element analysis of soils, plants, and water. Communications in Soil Science and Plant Analysis, 31(11–14), 1479–1512.
Tallis, J. H. (1985). Mass movement and erosion of a southern Pennine blanket peat. Journal of Ecology, 73(1), 283–315.
Teutsch, N., Erel, Y., Halicz, L., & Banin, A. (2001). Distribution of natural and anthropogenic lead in Mediterranean soils. Geochimica et Cosmochimica Acta, 65(17), 2853–2864.
Tipping, E., Smith, E. J., Lawlor, A. J., Hughes, S., & Stevens, P. A. (2003). Predicting the release of metals from ombrotrophic peat due to drought-induced acidification. Environmental Pollution, 123(2), 239–253.
Tyler, G., Pahlsson, A. M. B., Bengtsson, G., Baath, E., & Tranvik, L. (1989). Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates—a review. Water, Air, and Soil Pollution, 47(3–4), 189–215.
USEPA (1998). Environmental technology verification report. Field portable X-ray fluorescence analyzer. Metorex X-MET 920-P and 940, EPA/600/R-97/146.: United States Environmental Protection Agency
USEPA (2008). Basic XRF concepts. Advanced design application, data analysis for field-portable XRF. United States Environmental Protection Agency
Van Asselen, S., & Roosendaal, C. (2009). A new method for determining the bulk density of uncompacted peat from field settings. Journal of Sedimentary Research, 79, 918–922.
Van Cott, R. J., McDonald, B. J., & Seelos, A. G. (1999). Standard soil sample preparation error and comparison of portable XRF to laboratory AA analytical results. Nuclear Instruments and Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 422(1–3), 801–804.
Vile, M. A., Wieder, R. K., & Novak, M. (1999). Mobility of Pb in Sphagnum-derived peat. Biogeochemistry, 45(1), 35–52.
Vile, M. A., Wieder, R. K., & Novak, M. (2000). 200 years of Pb deposition throughout the Czech Republic: patterns and sources. Environmental Science and Technology, 34(1), 12–21.
Weiss, D., Shotyk, W., Appleby, P. G., Kramers, I. D., & Cheburkin, A. K. (1999). Atmospheric Pb deposition since the industrial revolution recorded by five Swiss peat profiles: enrichment factors, fluxes, isotopic composition, and sources. Environmental Science and Technology, 33(9), 1340–1352.
Yafa, C., & Farmer, J. G. (2006). A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry. Analytica Chimica Acta, 557(1–2), 296–303.
Zheng, J., Shotyk, W., Krachler, M., & Fisher, D. (2007). 15,800 years of atmospheric lead deposition on Devon Ice Cap, Nunavut, Canada: natural and anthropogenic enrichments, isotopic composition, and predominant sources. Global Biogeochemical Cycles, 21, GB2027.
Acknowledgments
We thank The University of Manchester for the provision of a Graduate Teaching Studentship (to E. L. Shuttleworth). We are grateful to The National Trust and United Utilities for allowing work to be carried out at the study sites and to the University of Manchester and Moors for the Future who provided funding for analytical costs. Thanks also go to John Moore, Jonathan Yarwood and Laurie Cunliffe for their assistance in the lab and to Jason Dortch for his help with constructing the figures. Finally, we would like to thank the reviewers for their helpful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shuttleworth, E.L., Evans, M.G., Hutchinson, S.M. et al. Assessment of Lead Contamination in Peatlands Using Field Portable XRF. Water Air Soil Pollut 225, 1844 (2014). https://doi.org/10.1007/s11270-013-1844-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11270-013-1844-2
Keywords
- FPXRF
- Organic matter
- High moisture content
- Pollution
- Heavy metals
- In situ measurement
- Data quality