Skip to main content
Log in

Sorption of Lead in Animal Manure Compost: Contributions of Inorganic and Organic Fractions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigated lead (Pb) sorption by inorganic and acid-non-soluble organic fractions, which were physicochemically fractionated from cattle, swine, and poultry composts, to understand how Pb is immobilized by animal manure compost and to evaluate the contribution of each fraction in Pb immobilization. Pb was predominantly sorbed on humic acid in the acid-non-soluble organic fraction; on the other hand, Pb sorption by the inorganic fraction could be attributed to the precipitation of Pb compound minerals such as lead phosphate and lead sulfate. The amounts of Pb sorbed on the inorganic fraction were 4.1–8.1 times higher than that sorbed on the acid-non-soluble organic fraction. The amount of Pb sorbed on the inorganic fraction and acid-non-soluble organic fractions was 37–60 and 19–43 %, respectively, of the total Pb sorbed. The results of this study clearly show that the inorganic fraction in the composts effectively immobilizes Pb. Furthermore, the high content of the inorganic components, particularly phosphorus, is important in Pb immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alvarenga, P., Goncalves, A. P., Fernandes, R. M., de Varennes, A., Vallini, G., Duarte, E., & Cunha-Queda, A. C. (2008). Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Science of the Total Environment, 406, 43–56.

    Article  CAS  Google Scholar 

  • Alvarenga, P., Goncalves, A. P., Fernandes, R. M., de Varennes, A., Vallini, G., & Duarte, E. (2009). Organic residues as immobilizing agents in aided phytostabilization: (Ι) effects on soil chemical characteristics. Chemosphere, 74, 1292–1300.

    Article  CAS  Google Scholar 

  • AOAC. (1997). Official methods of analysis (16th ed.). Gaithesburg: Association of Official Analytical Chemists International.

    Google Scholar 

  • Aoyama, M. (1991). Properties of fine and water-soluble fractions of several composts ΙΙ. Organic forms of nitrogen, neutral sugars, and muramic acid in fractions. Soil Science and Plant Nutrition, 37, 629–637.

    Article  CAS  Google Scholar 

  • Aoyama, M. (1996). Fractionation of water-soluble organic substances formed during plant residue decomposition and high performance size exclusion chromatography of the fractions. Soil Science and Plant Nutrition, 42, 31–40.

    Article  CAS  Google Scholar 

  • Baghaie, A., Khoshgoftarmanesh, A. H., Afyuni, M., & Shulin, R. (2011). The role of organic and inorganic fractions of cow manure and biosolids on lead sorption. Soil Science and Plant Nutrition, 57, 11–18.

    Article  Google Scholar 

  • Basta, N. T., Gradwohl, R., Snethen, K. L., & Schroder, J. L. (2001). Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. Journal of Environmental Quality, 30, 1222–1230.

    Article  CAS  Google Scholar 

  • Boisson, J., Ruttens, A., Mench, M., & Vangronsveld, J. (1999). Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation. Environmental Pollution, 104, 225–233.

    Article  CAS  Google Scholar 

  • Brown, S., Chaney, R. L., Hallfrisch, J. G., & Xue, Q. (2003). Effect of biosolids processing on lead bioavailability in an urban soil. Journal of Environmental Quality, 32, 100–108.

    CAS  Google Scholar 

  • Cao, X., Ma, L. Q., Singh, S. P., & Zhou, Q. (2008). Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions. Environmental Pollution, 152, 184–192.

    Article  CAS  Google Scholar 

  • Cao, X., Wahbi, A., Ma, L., Li, B., & Yang, Y. (2009). Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardous Materials, 164, 555–564.

    Article  CAS  Google Scholar 

  • Chen, S. B., Zhu, Y. G., & Ma, Y. B. (2006). The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Journal of Hazardous Materials, 134, 74–79.

    Article  CAS  Google Scholar 

  • Chen, H. S., Huang, Q.Y., Liu, L.N., Cai, P., Liang, W., Li, M. (2010). Poultry manure compost alleviates the phytotoxicity of soil cadmium: Influence on growth of pakchoi (Brassica chinensis L.). Pedosphere, 20: 63–70.

    Google Scholar 

  • Chiron, M., Guilet, R., & Deydier, E. (2003). Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetics models. Water Research, 37, 3079–3086.

    Article  CAS  Google Scholar 

  • Chiu, S. W., Gao, T., Chan, C. S. S., & Ho, C. K. M. (2009). Removal of spilled petroleum in industrial soils by spent compost of mushroom Pleurotus pulmonarius. Chemosphere, 75, 837–842.

    Article  CAS  Google Scholar 

  • Clemente, R., & Bernal, M. P. (2006). Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acid. Chemosphere, 64, 1264–1273.

    Article  CAS  Google Scholar 

  • Clemente, R., Escolar, A., & Bernal, M. P. (2006). Heavy metals fractionation and organic matter mineralization in contaminated calcareous soil amended with organic materials. Bioresource Technology, 97, 1894–1901.

    Article  CAS  Google Scholar 

  • de la Fuente, C., Clemente, R., & Bernal, M. P. (2008). Changes in metal speciation and pH in olive processing waste and sulphur-treated contaminated soil. Ecotoxicology and Environmental Safety, 70, 207–215.

    Article  Google Scholar 

  • Doelsch, E., Masion, A., Moussard, G., Chevassus-Rosset, C., & Wojciechowicz, O. (2010). Impact of pig slurry and green waste compost application on heavy metal exchangeable fractions in tropical soils. Geoderma, 155, 390–400.

    Article  CAS  Google Scholar 

  • Dong, C. F., Shen, Y. X., Ding, C. L., Xu, N. X., Cheng, Y. H., & Gu, H. R. (2013). The feeding quality of rice (Oryza sativa L.) straw at different cutting heights and the related stem morphological traits. Field Crops Research, 141, 1–8.

    Article  Google Scholar 

  • Farfel, M. R., Orlova, A. O., Chaney, R. L., Lees, P. S. J., Rohde, C., & Ashley, P. J. (2005). Biosolids compost amendment for reducing soil lead hazards: a pilot study of Orgro® amendment and grass seeding in urban yards. Science of Total Environment, 340, 81–95.

    Article  CAS  Google Scholar 

  • Farrell, M., & Jones, D. L. (2010). Use of composts in the remediation of heavy metal contaminated soil. Journal of Hazardous Materials, 175, 575–582.

    Article  CAS  Google Scholar 

  • Farrell, M., Perkins, W. T., Hobbs, P. J., Griffith, G. W., & Jones, D. L. (2010). Migration of heavy metals in soil as influenced by compost amendments. Environmental Pollution, 158, 55–64.

    Article  CAS  Google Scholar 

  • Frossard, E., Tekely, P., & Grimal, J. Y. (1994). Characterization of phosphate species in urban sewage sludges by high-resolution solid-state 31P NMR. European Journal of Soil Science, 45, 403–408.

    Article  CAS  Google Scholar 

  • Furuta, S., Katsuki, H., & Komarneni, S. (1998). Porus hydroxyapatite monoliths from gypsum waste. Journal of Materials Chemistry, 8, 2803–2806.

    Article  CAS  Google Scholar 

  • García, C., Hernández, T., & Costa, F. (1991). Study on water extract of sewage sludge composts. Soil Science and Plant Nutrition, 37, 399–408.

    Article  Google Scholar 

  • Gardea-Torresdey, J. L., Tnag, L., & Salvador, J. M. (1996). Copper adsorption by esterified and unesterified fractions of Sphagnum peat moss and its different humic substances. Journal of Hazardous Materials, 48, 191–206.

    Article  CAS  Google Scholar 

  • Hashimoto, Y., & Sato, T. (2007). Removal of aqueous lead by poorly-crystalline hydroxyapatites. Chemosphere, 69, 1775–1782.

    Article  CAS  Google Scholar 

  • Honda, M., Tamura, H., Kimura, T., Kinoshita, T., Matsufuru, H., & Sato, T. (2007). Control of lead polluted leachate in a box-scale phytoremediation test using common buckwheat (Fagopyrum esculentum Moench) grown on lead contaminated soil. Environmental Technology, 28, 425–431.

    Article  CAS  Google Scholar 

  • Ito, T., Komiyama, T., Saigusa, M., & Morioka, M. (2010). Phosphate composition of swine and poultry manure composts. Japanese Journal of Soil Science and Plant Nutrition, 81, 215–223 (in Japanese with English abstract).

    CAS  Google Scholar 

  • Karaca, A. (2004). Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma, 122, 297–303.

    Article  CAS  Google Scholar 

  • Katoh, M., Gotoh, S., & Sato, T. (2012). Estimation of lead sorption based on phosphorus dissolution from apatite. Journal of Japan Society of Civil Engineering, Series G Environmental Research, 68, 435–442 (in Japanese with English abstract.)

    Google Scholar 

  • Logan, E. M., Pulford, I. D., Cook, G. T., & Mackenzie, A. B. (1997). Complexation of Cu2+ and Pb2+ by peat and humic acid. European Journal of Soil Science, 48, 685–696.

    Article  CAS  Google Scholar 

  • Low, K. S., Lee, C. K., & Mak, S. M. (2004). Sorption of copper and lead by citric acid modified wood. Wood Science and Technology, 38, 629–640.

    Article  CAS  Google Scholar 

  • Madejόn, E., Pérez de Mora, A., Felipe, E., Burgos, P., & Cabrera, F. (2006). Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environmental Pollution, 139, 40–52.

    Article  Google Scholar 

  • Miretzky, P., & Cirelli, F. A. (2008). Phosphate for Pb immobilization in soil: a review. Environmental Chemistry Letters, 6, 121–133.

    Article  CAS  Google Scholar 

  • Narwal, R. P., & Singh, B. R. (1998). Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil. Water, Air, and Soil Pollution, 103, 405–421.

    Article  CAS  Google Scholar 

  • O’Dell, R., Silk, W., Green, P., & Classen, V. (2007). Compost amendment of Cu–Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Bromus carinatus (Hook and Arn.). Environmental Pollution, 148, 115–124.

    Article  Google Scholar 

  • Paré, T., Dinel, H., Schnitzer, M., & Dumontet, S. (1998). Transformation of carbon and nitrogen during composting of animal manure and shredded paper. Biology and Fertility of Soils, 26, 173–178.

    Article  Google Scholar 

  • Ruttens, A., Mench, M., Colpaert, J. V., Boisson, J., Carleer, R., & Vangronsveld, J. (2006). Phytostabilization of a metal contaminated sandy soil. Ι: influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environmental Pollution, 144, 524–532.

    Article  CAS  Google Scholar 

  • Sato, A., Takeda, H., Oyanagi, W., Nishihara, E., & Murakami, M. (2010). Reduction of cadmium uptake in spinach (Spinacia oleracea L.) by soil amendment with animal waste compost. Journal of Hazardous Materials, 181, 298–304.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1976). Stability constants of Cu2+, Pb2+, and Cd2+ complexes with humic acids. Soil Science Society of American Journal, 40, 665–672.

    Article  CAS  Google Scholar 

  • van Herwijnen, R., Hutchings, T. R., Al-Tabbaa, A., Moffat, A. J., Johns, M. L., & Ouki, S. K. (2007). Remediation of metal contaminated soil with mineral-amended composts. Environmental Pollution, 150, 347–354.

    Article  Google Scholar 

  • Walker, D. J., Clemente, R., & Bernal, M. P. (2003). Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere, 57, 215–224.

    Article  Google Scholar 

  • Walker, D. J., Clemente, R., Roig, A., & Bernal, M. P. (2004). The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environmental Pollution, 122, 303–312.

    Article  Google Scholar 

  • Yamaguchi, T., Harada, Y., & Tsuiki, M. (2000). Basic data of animal waste composts. Miscellaneous Publication of The National Agriculture Research Center, 41, 1–178 (in Japanese).

    Google Scholar 

  • Zhang, P., & Ryan, J. A. (1998). Formation of pyromorphite in anglesite-hydroxyapatite suspensions under varying pH conditions. Environmental Science and Technology, 32, 3318–3324.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The ICP-OES and NC analyzer instruments used for the chemical analyses in this study were made available by the Division of Instrumental Analysis at Gifu University. The authors are grateful to Prof. F. Li, Prof. T. Yamada, and Prof. Y. Ohya (Gifu University) for allowing the use of the TOC analyzer and XRD. This study was supported by JSPS KAKENHI grant number 23710089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Katoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katoh, M., Kitahara, W. & Sato, T. Sorption of Lead in Animal Manure Compost: Contributions of Inorganic and Organic Fractions. Water Air Soil Pollut 225, 1828 (2014). https://doi.org/10.1007/s11270-013-1828-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1828-2

Keywords

Navigation