Skip to main content
Log in

Sorption Behavior of Ibuprofen and Naproxen in Simulated Domestic Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Reduction in the concentration of pharmaceuticals present in wastewater has been attributed to sorption and biodegradation. However, the contribution of these processes has not been fully characterized. Previous studies have reported varying effects of solution pH and concentration on sorption behavior of pharmaceuticals in different absorbents including activated carbon waste and zeolites. Here we report the pH and concentration effect on sorption of two common anti-inflammatory drugs, viz., ibuprofen and naproxen, on suspended solids in simulated domestic wastewater (SDWW). Batch experiments were conducted at various pH levels, viz., 3.5, 6.5, 7.5, and 8.5, and concentration, viz., 125, 250, 500, 750, and 1,000 μg L−1. The results showed that both ibuprofen and naproxen have higher sorption at lower pH values and at higher concentration. It was found that the data were comparatively well fitted to the Redlich–Peterson isotherm. The study revealed that both ibuprofen and naproxen can be removed from wastewater by the sorption process achieved by lowering the pH to values lower than pK a and maintaining the concentration at an optimal value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, S. J., Gan, Q., Mattews, R., & Johnson, P. A. (2003). Comparison of optimized isotherm models for basic dye adsorption by kudzu. Bioresource Technology, 88, 143–52.

    Article  CAS  Google Scholar 

  • Andreozzi, R., Raffaele, M., & Nicklas, P. (2003). Pharmaceuticals in STP effluents and their solar photodegradationin aquatic environment. Chemosphere, 50, 1319–30.

    Article  CAS  Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and wastewater, 19th edition. 2540 D (Total suspended solids dried at 103–105°C, pp. 2–56). Washington: APHA.

    Google Scholar 

  • ASCE (2000). Conveyance of residual form water and wastewater treatment. ASCE manual and reports on engineering practice. 98.

  • Asku, Z., & Tezer, S. (2005). Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochemistry, 40, 1347–61.

    Article  Google Scholar 

  • Boyd, G. R., Reemtsma, H., Grimm, D. A., & Mitra, S. (2003). Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Science of the Total Environment, 311, 135–49.

    Article  CAS  Google Scholar 

  • Bronner, G., & Goss, K. (2011). Sorption of organic chemicals to soil organic matter: influence of soil variability and pH dependence. Environmental Science and Technology, 45, 1307–12.

    Article  CAS  Google Scholar 

  • Carballa, M., Omil, F., Lema, J. M., Llompart, M., Garcia-Jares, C., Rodriguez, I., et al. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38, 2918–26.

    Article  CAS  Google Scholar 

  • Carmosini, N., & Lee, L. S. (2009). Ciprofloxacin sorption by dissolve organic carbon from reference and bio-waste materials. Chemosphere, 77, 813–20.

    Article  CAS  Google Scholar 

  • Chabani, M., Amrane, A., & Bensmaili, A. (2009). Equilibrium sorption isotherms for nitrate on resin amberlite IRA 400. Journal of Hazardous Materials, 165, 27–33.

    Article  CAS  Google Scholar 

  • Daughton, C. G., & Ternes, C. G. (1999). Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives, 107, 907–38.

    Article  CAS  Google Scholar 

  • Daughton, C. G. (2003). Pollution from the combined activities, action, and behaviors of the public: pharmaceuticals and personal care products. NorCalSETAC News, 14(1), 5–15.

    Google Scholar 

  • Deepatana, A., & Valix, M. (2008). Comparative adsorption isotherms and modeling of nickel and cobalt citrate complexes onto chelating resins. Desalination, 218, 334–42.

    Article  CAS  Google Scholar 

  • Díaz-Cruz, M., de Alda, M. J. L., & Bacelό, D. (2003). Environment behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends in Analytical Chemistry, 22, 340–351.

    Article  Google Scholar 

  • Esperanza, M., Suidan, M. T., Nishimura, F., Wang, Z.-M., Sorial, G. A., Zaffiro, A., et al. (2004). Determination of sex hormones and nonylphenol ethoxylates in the aqueous matrixes of two pilot-scale municipal wastewater treatment plants. Environmental Science and Technology, 38, 3028–35.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Overtheadsorption in solution. Zeitschrift für Physikalische Chemie, 57, 385–470.

    CAS  Google Scholar 

  • Giles, C., Macewans, T. H., Nakhwa, N., Smith, D. (1960). Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society, 3973-3993.

  • Githinji, L. J. M., Musey, M. K., & Ankumah, R. O. (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air, and Soil Pollution, 219, 191–201.

    Article  CAS  Google Scholar 

  • Hamdaoui, O., & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials, 147, 381–94.

    Article  CAS  Google Scholar 

  • Herberer, T. (2002a). Tracking persistent pharmaceuticals residues from municipal sewage to drinking water. Journal of Hydrology, 266, 175–89.

    Article  Google Scholar 

  • Herberer, T. (2002b). Occurrence, fate, and removal of pharmaceuticals residues in the aquatic environment, a review. Toxicology Letter, 131, 5–17.

    Article  Google Scholar 

  • Ho, Y. (2004). Selection of optimum sorption isotherm. Carbon, 42(10), 2115–7.

    Article  CAS  Google Scholar 

  • Kasteel, R., Mboh, C. M., Unold, M., Groeneweg, J., Vanderborght, J., & Vereecken, H. (2010). Transformation and sorption of the veterinary antibiotic sulfadiazine in two soils: a short-term batch study. Environmental Science & Technology, 44, 4651–7.

    Article  CAS  Google Scholar 

  • Kumar, K. V. (2007). Optimum sorption isotherm by linear and non-linear methods for malachite green onto lemon peel. Dyes and Pigments, 74, 595–7.

    Article  CAS  Google Scholar 

  • Kumar, K. V., Sivanesan, S., & Ramamurthi, V. (2005). Adsorption of malachite onto Pithophora sp., fresh water algae: equilibrium and kinetic modeling. Process Biochemistry, 40, 2865–72.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids.J. American Chemical Society, 38, 2221–95.

    Article  CAS  Google Scholar 

  • Lin, A. Y., Lin, C., Tung, H., & Chary, N. S. (2010). Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments. Journal of Hazardous Materials, 183, 242–50.

    Article  CAS  Google Scholar 

  • Lindqvist, N., Tuhkanen, T., & Kronberg, L. (2005). Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Research, 39, 2219–28.

    Article  CAS  Google Scholar 

  • Maoz, A., & Chefetz, B. (2010). Sorption of the pharmaceuticals carbamazepine and naproxen to dissolved organic matter: role of structural fractions. Water Research, 44(3), 981–9.

    Article  CAS  Google Scholar 

  • Mestre, A. S., Pires, J., Nogueira, J. M. F., Parra, J. B., Carvalhoand, A. P., & Ania, C. O. (2009). Waste-derived activated carbons for removal of ibuprofen from solution: role of surface chemistry and pore structure. Bioresource Technology, 100, 1720–6.

    Article  CAS  Google Scholar 

  • Miege, C., Choubert, J. M., Ribeiro, L., Eusebe, M., & Coquery, M. (2009). Fate of pharmaceuticals and personal care products in wastewater treatment plants—conception of a database and first results. Environmental Pollution, 157, 1721–6.

    Article  CAS  Google Scholar 

  • Meylan, W., & Howard, P. H. (1992). Molecular topology/fragment contribution method for predicting soil sorption coefficients. Environmental Science and Technology, 1092(26), 1580–1567.

    Google Scholar 

  • Öllers, S., Singer, H. P., Fässler, P., & Müller, S. R. (2001). Simultaneous quantification of neutral and acidic pharmaceuticals and pesticides at the low-ng/l level in surface and waste water. Journal of Chromatography, A911, 225–34.

    Article  Google Scholar 

  • Redlich, B. O., & Perterson, D. L. (1959). A useful adsorption isotherm. The Journal of Physical Chemistry, 63, 1024.

    Article  CAS  Google Scholar 

  • Scheytt, T., Mersmann, P., Lindstädt, R., & Heberer, T. (2005). Determination of sorption coefficients of pharmaceutically active substances carbamazepine, diclofenac, and ibuprofen in sandy sediments. Chemosphere, 60, 245–53.

    Article  CAS  Google Scholar 

  • Sebők, A., Vasanits-Zsigrai, A., Palkó, G., Záray, G., & Molnár-Perl, I. (2008). Identification and quantification of ibuprofen, naproxen, ketoprofen and diclofenac present in waste-waters, as their trimethylsilyl derivatives, by gas chromatography mass spectrometry. Tanlanta, 76, 642–50.

    Article  Google Scholar 

  • Sposito, G. (2008). The chemistry of soils (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Tauxe-Wuersch, A., Alencastro, L., Grandjean, D., & Tarradellas, J. (2005). Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment. Water Research, 39, 1761–72.

    Article  CAS  Google Scholar 

  • Ternes, T. A., Herrmann, N., Bonerz, M., Knacker, T., Siegristand, H., & Joss, A. (2004). A rapid method to measure the solid-water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Research, 38, 4075–84.

    Article  CAS  Google Scholar 

  • Treybal, R. E. (1981). Mass transfer operations (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Urase, T., & Kikuta, T. (2005). Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. Water Research, 39, 1289–300.

    Article  CAS  Google Scholar 

  • Wilen, B.-M., Jin, B., & Lanta, P. (2003). The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Research, 37, 2127–39.

    Article  CAS  Google Scholar 

  • Wu, F.-C., Liu, B.-L., Wu, K.-T., & Tseng, R.-L. (2010). A linear form analysis of Redlich–Peterson isotherm equation for the adsorption of dyes. Chemical Engineering Journal, 162, 21–7.

    Article  CAS  Google Scholar 

  • Xu, J., Wu, L., Chen, W., & Chang, A. C. (2008). Simultaneous determination of pharmaceuticals, endocrine disrupting compounds and hormones in soils by gas chromatography–mass spectrometry. Journal of Chromatography A, 1202, 189–95.

    Article  CAS  Google Scholar 

  • Xu, J., Wu, L., Chen, W., & Chang, A. C. (2009). Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere, 77, 1299–305.

    Article  CAS  Google Scholar 

  • Ziylan, A., & Ince, N. H. (2011). The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes. Journal of Hazardous Materials, 187, 24–36.

    Article  CAS  Google Scholar 

  • Zwieger, C., & Firmmel, F. (2000). Oxidative treatment of pharmaceuticals in water. Water Research, 34, 1881–5.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by George Washington Carver Agricultural Experiment Station, Tuskegee University, Tuskegee, Alabama 36088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard J.M. Githinji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, S.C., Githinji, L.J., Ankumah, R.O. et al. Sorption Behavior of Ibuprofen and Naproxen in Simulated Domestic Wastewater. Water Air Soil Pollut 225, 1821 (2014). https://doi.org/10.1007/s11270-013-1821-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1821-9

Keywords

Navigation