Skip to main content

Advertisement

Log in

The Role of Sulfur in Increasing Guinea Grass Tolerance of Copper Phytotoxicity

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Soil pollution with trace elements is a growing problem with serious environmental impacts and developing strategies to reduce those impacts is a high priority. The objectives of this study were to assess the role of sulfur (S) in reducing the phytotoxic effects of copper (Cu) and the appearance of oxidative stress due to excess Cu in the growth medium and to assess the potential of guinea grass for Cu phytoremediation. The experiment was carried out in a greenhouse, where the forage grass Panicum maximum cv. Tanzânia was grown with a nutrient solution containing combinations of three S concentrations (0.1, 2, and 4 mmol L−1) and four Cu concentrations (0.3, 100, 500, and 1,000 μmol L−1) using a 3 × 4 factorial design in complete randomized blocks with four replicates. The following variables were measured: shoot and root dry mass production, leaf and tiller number, S and Cu concentrations in diagnostic leaves and roots, H2O2, lipid peroxidation, and proline levels in the diagnostic leaves. Very high Cu availability (1,000 μmol L−1) that resulted in Cu concentration higher than 60 mg kg−1 in diagnostic leaves caused more than 50 % reduction in shoot and root dry mass production about 30–40 % in the number of leaves and tillers around 20 % increase in lipid peroxidation and more than 10 times increase in proline production. Plants properly fed with S showed mitigation to Cu toxicity. Guinea grass showed promise as an agent in the phytoremediation of Cu-polluted areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alia, M. P., Hanty, M. O., & Matysik, J. (2001). Effect of proline on the production of singlet oxygen. Amino Acids, 21, 195–200.

    Article  CAS  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signaling transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  Google Scholar 

  • Ashraf, M., & Fooland, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 9, 206–216.

    Article  Google Scholar 

  • Aygun, S. F., Ozdener, Y., Aydin, B., Demir, E., & Ustaosman, B. C. (2011). Copper effects on the antioxidative responses of copper-tolerant Hirschefeldia incana (L.) leaves. Fresenius Environmental Bulletin, 20, 2050–2058.

    CAS  Google Scholar 

  • Bassi, R., & Sharma, S. S. (1993a). Proline accumulation in wheat seedlings exposed to zinc and copper. Phytochemistry, 33, 1339–1342.

    Article  CAS  Google Scholar 

  • Bassi, R., & Sharma, S. S. (1993b). Changes in proline content accompanying the uptake of zinc and copper by Lemna minor. Annals of Botany, 72, 151–154.

    Article  CAS  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Burkhead, J. L., Reynolds, K. A. G., Abdel-Ghany, S. E., Cohu, C. M., & Pilon, M. (2009). Copper homeostasis. New Phytologist, 182, 799–816.

    Article  CAS  Google Scholar 

  • Chen, C. T., Chen, L. M., Lin, C. C., & Kao, C. H. (2001). Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Science, 160, 283–290.

    Article  CAS  Google Scholar 

  • Chen, C. T., Chen, T. H., Lo, K. F., & Chiu, C. Y. (2004). Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Science, 166, 103–111.

    Article  CAS  Google Scholar 

  • Choudhary, M., Jetly, U. K., Khan, A., Zutshi, S., & Fatma, T. (2007). Effect of heavy metal stress on proline and malondialdehyde and superoxide dismutase activity in the cyanobacterium Spirulina platensis S-5. Ecotoxicology and Environmental Safety, 66, 204–209.

    Article  CAS  Google Scholar 

  • Crawford, N. M., Kahn, M. L., Leustek, T., & Long, S. R. (2002). Nitrogen and sulphur. In B. B. Buchanan, W. Gruissem, & R. L. Jones (Eds.), Biochemistry and molecular biology of plants (pp. 786–849). Rockville: American Society of Plant Physiologists.

    Google Scholar 

  • Dal Corso, G., Farinati, S., & Furini, A. (2010). Regulatory networks of cadmium stress in plants. Plant Signaling & Behavior, 5, 663–667.

    Article  CAS  Google Scholar 

  • De Bona, F. D., & Monteiro, F. A. (2010). Marandu palisadegrass growth under nitrogen and sulphur for replacing Signal Grass in degraded tropical pasture. Scientia Agricola, 67, 570–578.

    Article  Google Scholar 

  • De Filippis, L. F., & Pallaghy, C. K. (1994). Heavy metals: sources and biological effects. In L. C. Rai, J. P. Gaur, & C. J. Soeder (Eds.), Algae and water pollution (pp. 31–77). Stuttgart: Schweizerbart’sche Verlagbuchhandlung.

    Google Scholar 

  • Farago, M. E., & Mullen, W. A. (1979). Plants which accumulate metals. IV. A possible copper–proline complex from the roots of Armeria maritima. Inorganica Chimica Acta, 32, 93–94.

    Article  Google Scholar 

  • Fazlieva, E. R., Kiseleva, I. S., & Zhuikova, T. V. (2012). Antioxidant activity in the leaves of Melilotus albus and Trifolium medium from man-made disturbed habitats in the middle urals under the influence of copper. Russian Journal of Plant Physiology, 59, 333–338.

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization—FAO (2013). http://www.fao.org. Accessed on 4 Apr 2013.

  • Gay, C., Collins, J., & Gebicki, J. M. (1999). Hydroperoxide assay with the ferric-xylenol Orange Complex. Analytical Biochemistry, 273, 149–155.

    Article  CAS  Google Scholar 

  • Gill, S. S., & Tetuja, N. (2011). Cadmium stress tolerance in crop plants. Plant Signaling & Behavior, 6, 215–222.

    Article  CAS  Google Scholar 

  • Grill, E., Winnacker, E. L., & Zenk, M. H. (1987). Phytochelatins, a class of heavy-metal-binding peptides from plants, are functional analogous to metallothioneins. Proceedings of National Academy of Sciences, 8, 439–443.

    Article  Google Scholar 

  • Hare, P. D., & Cress, W. A. (1997). Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regulation, 21, 79–102.

    Article  CAS  Google Scholar 

  • Hermes-Lima, M., Willmore, W. G., & Storey, K. B. (1995). Quantification of lipid peroxidation in tissue based on the Fe(III) Xylenol orange complex formation. Free Radical Biology and Medicine, 19, 271–280.

    Article  CAS  Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water culture method for growing plants without soils. Berkeley: California Agricultural Experimental Station. 347p.

    Google Scholar 

  • Janas, K. M., Zielińska-Tomaszewska, J., Rybaczek, D., Maszewski, J., Posmyk, M., Amarowicz, R., et al. (2010). The impact of copper ions on growth, lipid peroxidation, and phenolic compound accumulation and localization in lentil (Lens culinaris Medic.) seedlings. Journal of Plant Physiology, 167, 270–276.

    Article  CAS  Google Scholar 

  • Juszczuk, I. M., & Ostaszewska, M. (2011). Respiratory activity, energy and redox status in sulphur-deficient bean plants. Environmental and Experimental Botany, 74, 245–254.

    Article  CAS  Google Scholar 

  • Kramer, U., Pickering, I. J., Raskin, I., & Salt, D. E. (2000). Subcellular localization and speculation of nickel in hyperaccumulator and nonaccumulator Thlaspi species. Plant Physiology, 122, 1343–1353.

    Article  CAS  Google Scholar 

  • Lavres Júnior, J., Monteiro, F. A., & Schiavuzzo, P. F. (2008). Concentração de enxofre, valor SPAD e produção do capim-Marandu em resposta ao enxofre. Revista Brasileira de Ciências Agrárias, 3, 225–231.

    Article  Google Scholar 

  • López-Bucio, J., Cruz-Ramírez, A., & Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 6, 280–287.

    Article  Google Scholar 

  • Lou, L. Q., Shen, Z. G., & Li, X. D. (2004). The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper enriched soils. Environmental and Experimental Botany, 51, 111–120.

    Article  CAS  Google Scholar 

  • Luna, C. M., Gonzalez, V. S., & Trippi, V. S. (1994). Oxidative damage caused by excess copper in oat leaves. Plant Cell Physiology, 35, 11–15.

    CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants. London: Academic. 889p.

    Google Scholar 

  • Matsuda, T., Kuramata, M., Takahashi, Y., Kitagawa, E., Youssefian, S., & Kusano, T. (2009). A novel plant cysteine-rich peptide family conferring cadmium tolerance to yeast and plants. Plant Signaling & Behavior, 4, 419–421.

    Article  CAS  Google Scholar 

  • Mehta, S. K., & Gaur, J. P. (1999). Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytologist, 143, 253–259.

    Article  CAS  Google Scholar 

  • Mihara, M., Uchiyama, M., & Fukuzawa, K. (1980). Thiobarbituric acid value on fresh homogenate of rat as a parameter of lipid peroxidation in aging, CCl4 intoxication, and vitamin E deficiency. Biochemical Medicine, 23, 302–311.

    Article  CAS  Google Scholar 

  • Ministério da Agricultura, Pecuária e Abastecimento—MAPA (2013). http://www.agricultura.gov.br/animal/especies/bovinos-e-bubalinos. Accessed 16 March 2013

  • Monteiro, F. A. (2010). Pastagens. In L. I. Prochnow, V. Casarin, & S. R. Stipp (Eds.), Boas práticas para uso eficiente de fertilizantes (Vol. 3, pp. 231–285). Piracicaba: IPNI.

    Google Scholar 

  • Monteiro, F. A., Nogueirol, R. C., Melo, L. C. A., Artur, A. G., & Rocha, F. (2011). Effect of barium on growth and macronutrient nutrition in Tanzania guineagrass grown in nutrient solution. Communications in Soil Science and Plant Analysis, 42, 1510–1521.

    Article  CAS  Google Scholar 

  • Rauser, W. E. (1995). Phytochelatins and related peptides. Plant Physiology, 109, 1141–1149.

    Article  CAS  Google Scholar 

  • Sarruge, J. R., & Haag, H. P. (1974). Análises químicas em plantas. Piracicaba: ESALQ. 56p.

    Google Scholar 

  • SAS Institute Inc. (2000). SAS/STAT. User’s guide, version 8.0. Cary: SAS Institute.

    Google Scholar 

  • Schat, H., Sharma, S. S., & Vooijs, R. (1997). Heavy metal-induced accumulation of free proline in a metal-tolerant and a non-tolerant ecotype of Silene vulgaris. Physiologia Plantarum, 101, 477–482.

    Article  CAS  Google Scholar 

  • Shah, K., & Dubey, R. S. (1998). Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant. Biologia Plantarum, 40, 121–130.

    Article  Google Scholar 

  • Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57, 711–726.

    Article  CAS  Google Scholar 

  • Shu, W. S., Ye, Z. H., Lan, C. Y., Zhang, Z. Q., & Wong, M. H. (2002). Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environmental Pollution, 120, 445–453.

    Article  CAS  Google Scholar 

  • Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solute. Phytochemistry, 28, 1057–1060.

    Article  CAS  Google Scholar 

  • Stephan, U. W., & Scholz, G. (1993). Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiologia Plantarum, 88, 522–529.

    Article  CAS  Google Scholar 

  • Taiz, L., & Zeiger, E. (2004). Fisiologia vegetal. Porto Alegre: Artmed. 719p.

    Google Scholar 

  • Tallec, T., Diquelóu, S., Fauveau, C., Bataillé, M. P., & Ourry, A. (2008). Effects of nitrogen and sulfur gradients on plant competition, N and S use efficiencies and species abundance in a grassland plant mixture. Plant and Soil, 313, 267–282.

    Article  CAS  Google Scholar 

  • Thounaojam, T. C., Panda, P., Mazumdar, P., Kumar, D., Sharma, G. D., Sahoo, L., et al. (2012). Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiology and Biochemistry, 53, 33–39.

    Article  CAS  Google Scholar 

  • van Raij, B., Cantarella, H., Quaggio, J.A., and Furlani, A.M.C. (1996). Lime and fertilizer recommendations for the State of São Paulo. Campinas Instituto Agronômico, 285p (in Portuguese).

  • Wierzbicka, M. (1987). Lead accumulation and its translocation barriers in roots of Allinm cepa L—autoradiographic and ultrastructural studies. Plant Cell and Environment, 10, 17–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Brazil’s National Council for Scientific and Technological Development (CNPq). The second author thanks the São Paulo Research Foundation (FAPESP) for providing scholarships in support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Antonio Monteiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilabel, A.P., Nogueirol, R.C., Garbo, A.I. et al. The Role of Sulfur in Increasing Guinea Grass Tolerance of Copper Phytotoxicity. Water Air Soil Pollut 225, 1806 (2014). https://doi.org/10.1007/s11270-013-1806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1806-8

Keywords

Navigation