Skip to main content

Advertisement

Log in

Modeling the Effect of pH and Salinity on Biogeochemical Reactions and Metal Behavior in Sediment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A mathematical model is developed to investigate the effect of pH and salinity fluctuation on biogeochemical reactions and metals' behavior in sediments. The model includes one-dimensional vertical advective and diffusive transport of species, serial reductions of electron acceptors, and precipitation/dissolution of species, acid–base chemistry, and metal sorption to sediments. The model was tested using data obtained from laboratory microcosm experiments which exposed metal (Cd, Zn) contaminated sediment to alternating fresh and salty overlying water. The model successfully reproduces the contrasting metal's release behavior and the vertical profiles of pH, Cl, SO4 2−, Mn and Fe in porewater and the acid volatile sulfides (AVS) and simultaneously extracted metals (SEM) in sediments. The model showed that FeOOH(s) was the dominant sorption phase controlling the solubility of the metals at the surficial sediments while AVS controlled the solubility of the metals in anoxic sediments. The model also showed that the release of the metals to overlying water was controlled by the oxidation of metal sulfides in a very thin layer of oxic sediments (2–3 mm). The proposed model can be useful in managing metal contaminated sediments where pH and salinity are fluctuating by assessing the underlying biogeochemical processes and metals' behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Archer, D., Kheshgi, H., & Maier-Reimer, E. (1998). Dynamics of fossil fuel CO2 neutralization by marine CaCO3. Global Biogeochemical Cycles, 12(2), 259–276.

    Article  CAS  Google Scholar 

  • Atkinson, C. A., Jolley, D. F., & Simpson, S. L. (2007). Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere, 69(9), 1428–1437.

    Article  CAS  Google Scholar 

  • Boudreau, B. P. (1987). A steady-state diagenetic model for dissolved carbonate species and pH in the porewaters of oxic and suboxic sediments. Geochimica Et Cosmochimica Acta, 51(7), 1985–1996.

    Article  CAS  Google Scholar 

  • Boudreau, B. P. (1991). Modeling the sulfide-oxygen reaction and associated Ph gradients in porewaters. Geochimica Et Cosmochimica Acta, 55(1), 145–159.

    Article  CAS  Google Scholar 

  • Boudreau, B. P. (1997). Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments. Berlin: New York: Springer.

  • Brendel, P. J., & Luther, G. W., III. (1995). Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(−II) in porewaters of marine and freshwater sediments. Environmental Science & Technology, 29(3), 751–761.

    Article  CAS  Google Scholar 

  • Brouwer, H., & Murphy, T. P. (1994). Diffusion method for the determination of acid-volatile sulfides (AVS) in sediment. Environmental Toxicology & Chemistry, 13(8), 1273–1275.

    Article  CAS  Google Scholar 

  • Brown, P. N., Byrne, G. D., & Hindmarsh, A. C. (1989). Vode — a variable-coefficient ode solver. Siam Journal on Scientific & Statistical Computing, 10(5), 1038–1051.

    Article  Google Scholar 

  • Burden, R. L., & Faires, J. D. (2011). Numerical analysis (9th ed.). Boston, MA: Brooks/Cole, Cengage Learning.

    Google Scholar 

  • Burton, E. D., Bush, R. T., & Sullivan, L. A. (2006). Acid-volatile sulfide oxidation in coastal flood plain drains: iron − sulfur cycling and effects on water quality. Environmental Science & Technology, 40(4), 1217–1222.

    Article  CAS  Google Scholar 

  • Cai, W.-J., & Wang, Y. (1998). Thechemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnology & Oceanography, 43(4), 657–668.

    Article  CAS  Google Scholar 

  • Cai, W.-J., Zhao, P., Theberge Stephen, M., Witter, A., Wang, Y., & Luther, G. (2002). Porewater redox species, pH and pCO2 in aquatic sediments: electrochemical sensor studies in Lake Champlain and Sapelo Island. In Environmental electrochemistry (Vol. 811, pp. 188–209, ACS Symposium Series, Vol. 811): American Chemical Society.

  • Canavan, R. W., Van Cappellen, P., Zwolsman, J. J. G., van den Berg, G. A., & Slomp, C. P. (2007). Geochemistry of trace metals in a fresh water sediment: field results and diagenetic modeling. Science of the Total Environment, 381(1–3), 263–279.

    Article  CAS  Google Scholar 

  • Carbonaro, R. F., Mahony, J. D., Walter, A. D., Halper, E. B., & Di Toro, D. M. (2005). Experimental and modeling investigation of metal release from metal-spiked sediments. Environmental Toxicology & Chemistry, 24(12), 3007–3019.

    Article  CAS  Google Scholar 

  • Chapman, P. M., & Wang, F. Y. (2001). Assessing sediment contamination in estuaries. Environmental Toxicology & Chemistry, 20(1), 3–22.

    Article  CAS  Google Scholar 

  • Chapman, P. M., Wang, F., Adams, W. J., & Green, A. (1999). Appropriate applications of sediment quality values for metals and metalloids. Environmental Science & Technology, 33(22), 3937–3941.

    Article  CAS  Google Scholar 

  • Choi, J. H., Park, S. S., & Jaffé, P. R. (2006). Simulating the dynamics of sulfur species and zinc in wetland sediments. Ecological Modelling, 199(3), 315–323.

    Article  CAS  Google Scholar 

  • Cooper, D. C., Neal, A. L., Kukkadapu, R. K., Brewe, D., Coby, A., & Picardal, F. W. (2005). Effects of sediment iron mineral composition on microbially mediated changes in divalent metal speciation: importance of ferrihydrite. Geochimica Et Cosmochimica Acta, 69(7), 1739–1754.

    Article  CAS  Google Scholar 

  • Davis, J. A., Coston, J. A., Kent, D. B., & Fuller, C. C. (1998). Application of the surface complexation concept to complex mineral assemblages. Environmental Science & Technology, 32(19), 2820–2828.

    Article  CAS  Google Scholar 

  • Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Hicks, M. B., Mayr, S. M., et al. (1990). Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environmental Toxicology & Chemistry, 9(12), 1487–1502.

    Article  Google Scholar 

  • Di Toro, D. M., Allen, H. E., Bergman, H. L., Meyer, J. S., Paquin, P. R., & Santore, R. C. (2001). Biotic ligand model of the acute toxicity of metals: 1. Technical basis. Environmental Toxicology & Chemistry, 20(10), 2383–2396.

    Article  Google Scholar 

  • DiToro, D. M., Mahony, J. D., Hansen, D. J., & Berry, W. J. (1996). A model of the oxidation of iron and cadmium sulfide in sediments. Environmental Toxicology & Chemistry, 15(12), 2168–2186.

    Article  CAS  Google Scholar 

  • Dzombak, D., & Morel, F. (1990). Surface complexation modeling: hydrous ferric oxide. New York: Wiley-Interscience. 393 pp.

    Google Scholar 

  • Hong, Y. S., Kinney, K. A., & Reible, D. D. (2011a). Acid volatile sulfides oxidation and metals (Mn, Zn) release upon sediment resuspension: laboratory experiment and model development. Environmental Toxicology & Chemistry, 30(3), 564–575.

    Article  CAS  Google Scholar 

  • Hong, Y. S., Kinney, K. A., & Reible, D. D. (2011b). Effects of cyclic changes in pH and salinity on metals release from sediments. Environmental Toxicology & Chemistry, 30(8), 1775–1784.

    Article  CAS  Google Scholar 

  • Jaffé, P., Wang, S., Kallin, P., & Smith, S. (2001). The dynamics of arsenic in saturated porous media: fate and transport modeling for deep-water sediments, wetland sediments, and groundwater environments. In: Hellman, R., Wood, S.A. (Eds.), Water rock interactions, ore deposits, and environmental geochemistry: a tribute to David Crerar, Special Publication. The Geochemical Society, 7, 379–397.

    Google Scholar 

  • Johnson, N. W., Reible, D. D., & Katz, L. E. (2010). Biogeochemical changes and mercury methylation beneath an in-situ sediment cap. Environtal Science & Technology, 44(19), 7280–7286.

    Article  CAS  Google Scholar 

  • Jourabchi, P., Van Cappellen, P., & Regnier, P. (2005). Quantitative interpretation of pH distributions in aquatic sediments: a reaction-transport modeling approach. American Journal of Science, 305(9), 919–956.

    Article  CAS  Google Scholar 

  • Komlos, J., Moon, H. S., & Jaffé, P. R. (2008). Effect of sulfate on the simultaneous bioreduction of iron and uranium. Journal of Environtal Quality, 37(6), 2058–2062.

    Article  CAS  Google Scholar 

  • Lofts, S., & Tipping, E. (1998). An assemblage model for cation binding by natural particulate matter. Geochimica Et Cosmochimica Acta, 62(15), 2609–2625.

    Article  CAS  Google Scholar 

  • Mosley, L. M., Husheer, S. L. G., & Hunter, K. A. (2004). Spectrophotometric pH measurement in estuaries using thymol blue and m-cresol purple. Marine Chemistry, 91(1–4), 175–186.

    Article  CAS  Google Scholar 

  • Ringwood, A. H., & Keppler, C. J. (2002). Water quality variation and clam growth: is pH really a non-issue in estuaries? Estuaries, 25(5), 901–907.

    Article  Google Scholar 

  • Roden, E. E., & Urrutia, M. M. (1999). Ferrous iron removal promotes microbial reduction of crystalline iron(III) oxides. Environmental Science & Technology, 33(11), 1847–1853.

    Article  CAS  Google Scholar 

  • Sevinç Şengör, S., Spycher, N. F., Ginn, T. R., Sani, R. K., & Peyton, B. (2007). Biogeochemical reactive–diffusive transport of heavy metals in Lake Coeur d'Alene sediments. Applied Geochemistry, 22(12), 2569–2594.

    Article  Google Scholar 

  • Smith, S. L., & Jaffé, P. R. (1998). Modeling the transport and reaction of trace metals in water-saturated soils and sediments. Water Resource Research, 34(11), 3135–3147.

    Article  CAS  Google Scholar 

  • Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., & Greenwood, J. (2007). Reprint of "The effect of biogeochemical processes on pH". Marine Chemistry, 106(1–2), 380–401.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: chemical equilibria and rates in natural waters (3rd ed., Environmental Science and Technology). New York: Wiley.

    Google Scholar 

  • Tipping, E. (1998). Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquatic Geochemistry, 4(1), 3–47.

    Article  CAS  Google Scholar 

  • Travis, B. J., & Rosenberg, N. D. (1997). Modeling in situ bioremediation of TCE at Savannah River: effects of product toxicity and microbial interactions on TCE degradation. Environmental Science & Technology, 31(11), 3093–3102.

    Article  CAS  Google Scholar 

  • USEPA. (2005). Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protectrion of benthic organisms: metal mixtures (cadmium, copper, lead, nickel, silver and zinc). Harragansett: U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division.

    Google Scholar 

  • Wang, Y., & Van Cappellen, P. (1996). A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments. Geochimica Et Cosmochimica Acta, 60(16), 2993–3014.

    Article  CAS  Google Scholar 

  • Warren, L. A., & Haack, E. A. (2001). Biogeochemical controls on metal behaviour in freshwater environments. Earth-Science Reviews, 54(4), 261–320.

    Article  CAS  Google Scholar 

  • Yuan-Hui, L., & Gregory, S. (1974). Diffusion of ions in sea water and in deep-sea sediments. Geochimica Et Cosmochimica Acta, 38(5), 703–714.

    Article  Google Scholar 

  • Zachara, J. M., Fredrickson, J. K., Smith, S. C., & Gassman, P. L. (2001). Solubilization of Fe(III) oxide-bound trace metals by a dissimilatory Fe(III) reducing bacterium. Geochimica Et Cosmochimica Acta, 65(1), 75–93.

    Article  CAS  Google Scholar 

  • Zeebe, R. E. (2007). Modeling CO2 chemistry, δ13C, and oxidation of organic carbon and methane in sediment porewater: implications for paleo-proxies in benthic foraminifera. Geochimica Et Cosmochimica Acta, 71(13), 3238–3256.

    Article  CAS  Google Scholar 

  • Zhang, H., & Davison, W. (1995). Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Analytical Chemistry, 67(19), 3391–3400.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongseok Hong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1603 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, Y., Reible, D.D. Modeling the Effect of pH and Salinity on Biogeochemical Reactions and Metal Behavior in Sediment. Water Air Soil Pollut 225, 1800 (2014). https://doi.org/10.1007/s11270-013-1800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1800-1

Keywords

Navigation