Skip to main content
Log in

Anaerobic Technology Influence on Pig Slurry Biofertirrigation: Evaluation of Enteric Bacteria

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pig slurry is characterized by showing high concentration of total nitrogen (0.5–4.0 g l−1), organic matter (20–110 g l−1 CODT), fecal coliforms (103–108 CFU ml−1), and liquid phase content (around 90 %). The high total nitrogen and liquid phase content, makes its use as biofertilizer very interesting. However, in order to avoid greenhouse gas emissions, transformation of organic matter into methane by anaerobic technology comes to be essential. On the other hand, groundwater microbiological contamination by soil transport of pathogens from excreta makes slurry treatment very important. The aim of this study was to evaluate anaerobic technology influence on biofertirrigation onto silty soil using raw and anaerobically treated pig slurry, considering lactose (+) enteric bacteria as main indicators of fecal contamination. Total nitrogen load rates of 350 and 700 kg N ha−1 year−1 were used. The experimental design consisted in soil immobilized in columns. The system fed with raw pig slurry of 700 kg N ha−1 year−1 showed 99 % of bacterial retention, while the system fed with anaerobic effluent of 350 kg N ha−1 year−1 presented a retention of 86.2 %. A positive relation between bacterial retention and organic matter content in slurry was observed. On the other hand, almost the whole amount of the total nitrogen from the leachates corresponded to soil nitrates, and 99.46 %, 99.51 %, 99.35 %, and 99.29 % of ammonium fed was retained in the systems of raw pig slurry of 700 kg N ha−1 year−1, anaerobic effluent of 700 kg N ha−1 year−1, raw pig slurry of 350 kg N ha−1 year−1, and anaerobic effluent of 350 kg N ha−1 year−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA–AWWA–WPCF. (1998). Standard methods for examination of water and wastewater (19th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Atlas, R., & Bartha, R. (2002). In I. Capella & S. Ayerra (Eds.), Ecología microbiana y ecología ambiental. Madrid: Pearson Education.

    Google Scholar 

  • Belmonte, S. M., Hsieh, C., Figueroa, C., Campos, J. L., & Vidal, G. S. (2011). Influence of solids contained into piggery wastewater on the methanogenic toxicity. Electronic Journal of Biotechnology, 14(3), 11.

    Article  Google Scholar 

  • Bouwer, H. (1974). Renovating municipal wastewater by high-rate infiltration for ground-water recharge. Journal of American Water Works Association, 66(3), 159–162.

    CAS  Google Scholar 

  • Chartier, C. (2011). Gram negative lactose positive enteric bacteria retention in silty loam soil columns, after raw pig slurry and anaerobically treated slurry application. University of Concepción, 83 pp.

  • Chernicharo, C. A. L. (2006). Post-treatment options for the anaerobic treatment of domestic wastewater. Reviews in Environmental Science and Bio/Technology, 5(1), 73–92.

    Article  CAS  Google Scholar 

  • Crist, J. T., Zevy, Y., MacCarthy, J. F., Throop, J. A., & Steenhuis, T. S. (2005). Transport and retention mechanisms of colloids in partially saturated porous media. Vadose Zone Journal, 4(1), 184–195.

    CAS  Google Scholar 

  • Fischer, E. N., & Whalen, S. C. (2005). Rates and controls on denitrification in an agricultural soil fertilized with liquid lagoonal swine waste. Nutrient Cycling in Agroecosystems, 71(3), 271–287.

    Article  Google Scholar 

  • Gregory, K. J., & Walling, D. E. (1985). Drainage basin form and process; A geomorphological approach. London, pp. 458

  • Guber, A. K., Shelton, D. R., & Pachepsky, Y. A. (2005). Transport and retention of manure-borne coliforms in soil. Vadose Zone Journal, 4(3), 828–837.

    Article  Google Scholar 

  • Guber, A. K., Pachepsky, Y., Shelton, D. R., & Yu, O. (2007). Effect of bovine manure on coliform attachment to soil and soil particles of different sizes. Applied Environmental Microbiology, 73(10), 3363–3370.

    Article  CAS  Google Scholar 

  • Hamza, M., & Anderson, W. (2005). Soil compaction in cropping systems. A review of the nature, causes and possible solutions. Soil Tillage Research, 82(2), 121–145.

    Google Scholar 

  • Hernández, D., Fernández, J. M., Plaza, C., & Polo, A. (2007). Water-soluble organic matter and biological activity of a degraded soil amended with pig slurry. Science of the Total Environment, 378(1), 101–103.

    Article  Google Scholar 

  • Hudson, B. D. (1994). Soil organic matter and available water capacity. Journal of Soil and Water Conservation, 49(2), 189–194.

    Google Scholar 

  • Johnson, W. P., & Logan, B. E. (1996). Enhanced transport of bacteria in porous media by sediment-phase and aqueous-phase natural organic matter. Water Research, 30(4), 923–931.

    Article  CAS  Google Scholar 

  • Lewis, J., & Sjöstrom, J. (2010). Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. Journal of Contaminant Hydrology, 115(1–4), 1–13.

    Article  CAS  Google Scholar 

  • Madigan, M. T., Martinko, J. M. & Parker, J. (2004). Brock, biology of microorganisms. 10th ed. Pearson Education, pp. 1011

  • Maier, R., Pepper, I., Gerba, C. (2008). Environmental microbiology. Academic Press, pp. 624

  • McManus, J. (1988). Grain size determination and interpretation. In M. Tucker (Ed.), Techniques in sedimentology (pp. 63–85). Oxford: Blackwell Science.

    Google Scholar 

  • Montoya, M., & Martín, M. (2005). Análisis de la varianza (ANOVA) en ensayos de lixiviación de N-purín en columnas experimentales. In: Sampler, J. & Paz, A. (Ed.), VII Jornadas de Investigación en la Zona no Saturada del suelo, ZNS'05. Estudios de la Zona no Saturada del suelo (pp. 15–21). A Coruña

  • Mosaddeghi, M., Mahboubi, A., Zandsalimi, S., & Unc, A. (2009). Influence of organic waste type and soil structure on the bacterial filtration rates in unsaturated intact soil columns. Journal of Environmental Management, 90(2), 730–739.

    Article  CAS  Google Scholar 

  • Navia, R., Soto, M., Vidal, G., Bornhardt, C., & Diez, M. C. (2002). Alkaline pretreatment of kraft mill sludge to improve its anaerobic digestion. Bulletin of Environmental Contamination and Toxicology, 69(6), 869–876.

    Article  CAS  Google Scholar 

  • Navia, R., Levet, L., Mora, M. L., Vidal, G., & Diez, M. C. (2003). Allophanic soil adsorption system as a bleached kraft mill aerobic effluent post-treatment. Water, Air, and Soil Pollution, 148(1–4), 323–333.

    Article  CAS  Google Scholar 

  • Núñez-Delgado, A., López-Períago, E., & Díaz-Fierros-Viqueira, F. (2002). Pollution attenuation by soils receiving cattle slurry after passage of a slurry-like feed solution. Column experiments. Bioresourse Technology, 84(3), 229–236.

    Article  Google Scholar 

  • Plaza de los Reyes, C., Villamar, C. A., Neubauer, M. E., Pozo, G., & Vidal, G. (2013). Behavior of Typha angustifolia L in a free water surface constructed wetlands for the treatment of swine wastewater. Journal of Environmental Science and Health, Part A, 48(10), 1–9. doi:10.1080/10934529.2013.776852.

    Google Scholar 

  • Powelson, D. K., & Mills, A. L. (2001). Transport of Escherichia coli in sand columns with constant and changing water contents. Journal of Environmental Quality, 30(1), 238–245.

    Article  CAS  Google Scholar 

  • Provolo, G. (2005). Manure management practices in Lombardy (Italy). Bioresource Technology, 96(2), 145–152.

    Article  CAS  Google Scholar 

  • Rodríguez, D. C., Belmonte, M., Peñuelas, G., Campos, J. L., & Vidal, G. (2011). Behaviour of molecular weight distribution for the liquid fraction of pig slurry treated by anaerobic digestion. Environmental Technology, 32(3–4), 419–425.

    Article  Google Scholar 

  • Rufete, B., Perez-Murcia, M. D., Perez-Espinoza, A., Moral, R., Moreno-Caselles, J., & Paredes, C. (2006). Total and faecal coliform bacteria persistence in a pig slurry amended soil. Livestock Science, 102(3), 211–215.

    Article  Google Scholar 

  • Sánchez, M., & González, J. L. (2005). The fertilizer value of pig slurry: I. Values depending on the type of operation. Bioresource Technology, 96(10), 1117–1123.

    Article  Google Scholar 

  • Smith, J. E., Surampalli, R. Y., Reimers, R. S., Tyagi, R. D., & Lohani, B. N. (2008). Disinfection processes and stability refinements to biosolids treatment technologies. Journal of Hazard Toxic Radioactive Waste, 12(1), 10–17.

    CAS  Google Scholar 

  • Sobsey, M. D., Khatib, L. A., Hill, V. R., Alocilja, E., & Pillai, V. (2006). Pathogens in animals waste and the impact of waste management practices on their survival, transport and fate. In J. Rice, D. Caldwell, & F. Humenik (Eds.), Animal agriculture and the environment (pp. 609–666). St. Joseph: National Center for Manure and Animal Waste Management.

    Google Scholar 

  • Stevik, T. K., Aa, K., Ausland, G., & Hanssen, J. (2004). Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Research, 38(6), 1355–1367.

    Article  CAS  Google Scholar 

  • Topp, E., Scott, A., Lapen, D. R., Lyautey, E., & Duriez, P. (2009). Livestock waste treatment systems for reducing environmental exposure to hazardous enteric pathogens: some considerations. Bioresource Technology, 100(22), 5395–5398.

    Article  CAS  Google Scholar 

  • Tyagi, V. K., Khan, A. A., Kazmi, A. A., Mehrotra, I., & Chopra, A. K. (2009). Slow sand filtration of UASB reactor effluent: a promising post treatment technique. Desalination, 249(2), 571–576.

    Article  CAS  Google Scholar 

  • Unc, A., & Goss, M. J. (2003). Movement of faecal bacteria through the vadose zone. Water, Air, and Soil Pollution, 149(1–4), 327–337.

    Article  CAS  Google Scholar 

  • Unc, A., & Goss, M. J. (2004). Transport of bacteria from manure and protection of water resources. Applied Soil Ecology, 25(1), 1–18.

    Article  Google Scholar 

  • Valenzuela, M., Mondaca, M. A., Claret, M., Pérez, C., Lagos, B., & Parra, O. (2009). Assessment of the origin of microbiological contamination of groundwater at a rural watershed in Chile. Agrociencia, 43(4), 437–446.

    Google Scholar 

  • Venglovsky, J., Sasakova, N., & Placha, I. (2009). Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application. Bioresource Technology, 100(22), 5386–5391.

    Article  CAS  Google Scholar 

  • Vidal, G., & Diez, M. C. (2003). Influence of feedstock and bleaching technologies on methanogenic toxicity of kraft mill wastewater. Water Science and Technology, 48(6), 149–155.

    CAS  Google Scholar 

  • Villamar, C. A., Cañuta, T., Belmonte, M., & Vidal, G. (2012). Characterization of swine wastewater by Toxicity Identification Evaluation Methodology (TIE). Water, Air, and Soil Pollution, 223(1), 363–369.

    Article  CAS  Google Scholar 

  • Zagal, E., & Sadzawka, A. R. (2007). Protocolo de métodos de análisis para suelos y lodos. Chillán: University of Concepción & Chilean Soil Science Association.

    Google Scholar 

Download references

Acknowledgments

This study was partially funded by INNOVA BIO BIO 07-PC S1-198 and FONDAP 15130015 grant. The authors thank to Mrs. Patricia Escares form Microbiology Lab for her assistance and Mr. C. Contreras from Sucesión Yanine for allowing access to their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vidal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chartier, C., López, D. & Vidal, G. Anaerobic Technology Influence on Pig Slurry Biofertirrigation: Evaluation of Enteric Bacteria. Water Air Soil Pollut 225, 1790 (2014). https://doi.org/10.1007/s11270-013-1790-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1790-z

Keywords

Navigation