Skip to main content

Generalization of the MAFRAM Methodology for Semi-Volatile Organic Agro-Chemicals

Abstract

A wide variety of semi-volatile organic chemicals (SVOCs) are still in use in agricultural practices. A proper understanding of the environmental fate and ecotoxicological risk associated with these compounds can aid decision making, particularly regarding product registration and licensing. The aim of this paper is to expand the use of a previously developed Multimedia Agricultural Fate and Risk Assessment Model (MAFRAM) to SVOCs by adopting the fugacity concept as a second criterion to the existing MAFRAM partitioning criterion (i.e., aquivalence). Volatilization processes from surface compartments into the atmosphere were also included. For example, the application of the generalized model was illustrated using an average annual application rate of 4.48 kg/ha of chlorpyrifos over a typical homogeneous region. Chlorpyrifos emissions were assumed to take place in three environmental compartments (i.e., soil, air, and aboveground plants) with fractions of 0.1, 0.3, and 0.6, respectively. The trends seen in the modeling results were in good agreement with the existing experimental data. Validation issues in MAFRAM were also discussed. Comprehensive experimental validation is unattainable because of the large scale of the areas covered, the lack of boundaries for the system considered, and the uncertainty in the input parameters.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Batiha, M. A., Kadhum, A. A. H., Batiha, M. M., Takriff, M. S., & Abu Bakar, M. (2010). MAFRAM—a new fate and risk assessment methodology for non-volatile organic chemicals. Hazard Mater, 181, 1080–1087.

    CAS  Article  Google Scholar 

  2. Batiha, M. A., Kadhum, A. A. H., Takriff, M. S., Abu Bakar, M., Zahedi, F., Wan Ramli, W. D., & Batiha, M. M. (2009). Modeling the fate and transport of non-volatile organic chemicals in the agroecosystem: a case study of Cameron Highlands. Process Saf Environ Prot, 87, 121–134.

    CAS  Article  Google Scholar 

  3. Batiha, M. A., Kadhum, A. A. H., Zahedi, F., Abu Bakar, M., Wan Ramli, W. D., Takriff, M. S., & Batiha, M. M. (2007). The fate of non-volatile organic chemicals in the agricultural environment. Am J Appl Sci, 2, 456–464.

    Google Scholar 

  4. Batiha, M. A., Kadhum, A. A. H., Zahedi, F., Abu Bakar, M., Wan Ramli, W. D., Takriff, M. S., & Batiha, M. M. (2008). MAM—an aquivalence-based dynamic mass balance model of the fate of non-volatile organic chemicals in the agricultural environment. Am J Eng Appl Sci, 1, 252–259.

    Article  Google Scholar 

  5. Berding, V., & Matthies, M. (2002). European scenarios for EUSES regional distribution model. Environ Sci Poll Res Int, 9, 193–198.

    CAS  Article  Google Scholar 

  6. Bloomfield, J. P., Williams, R. J., Gooddy, D. C., Cape, J. N., & Guha, P. (2006). Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. Sci Total Environ, 369, 163–177.

    CAS  Article  Google Scholar 

  7. Budd, R., O’geen, A. O., Goh, K. S., Bondarenko, S., & Gan, J. (2011). Removal mechanisms and fate of insecticides in constructed wetlands. Chemosphere, 83, 1581–1587.

    CAS  Article  Google Scholar 

  8. Cahill, T. M., & Mackay, D. (2003). A high-resolution model for estimating the environmental fate of multi-species chemicals: application to malathion and pentachlorophenol. Chemosphere, 53, 571–581.

    CAS  Article  Google Scholar 

  9. Chiou, G. T., Freed, B. H., Schmedding, D. W., & Kohnert, K. L. (1977). Partition coefficients and bioaccumulation of selected organic chemicals. Environ Sci Technol, 11, 475.

    CAS  Article  Google Scholar 

  10. Corbin M (2009) Problem formulation for the environmental fate and ecological risk, endangered species and drinking water assessments in support of the registered review of chlorpyrifos, Office of Prevention, Pesticides, and Toxic Substances, U.S. EPA

  11. Cowan, C., Mackay, D., Feijtel, F., van de Meent, D., Di Guardo, A., Davies, J., & Mackay, N. (1995). The multi-media model: A vital tool for predicting the fate of chemicals. Pensacola: SETAC Press.

    Google Scholar 

  12. ECETOC. (1994). Environmental exposure assessment, Technical Report No. 61. Brussels: European Centre for Ecotoxicology and Toxicology of Chemicals.

    Google Scholar 

  13. EFSA (2005) Draft assessment report for chlorpyrifos, SANCO/3059/99 - rev. 1.5, European Commission Health & Consumer Protection Directorate-General, Food Safety: Production and Distribution chain

  14. Fang, H., Yu, Y. L., Wang, X., Shan, M., Wu, X. M., & Yu, J. Q. (2006). Dissipation of chlorpyrifos in pakchoi-vegetated soil in a greenhouse. J Environ Sci, 18, 760–764.

    CAS  Google Scholar 

  15. Huess, J. M., & Glasson, W. A. (1968). Hydrocarbon reactivity and eye irritation. Environ Sci Technol, 2, 1109–1116.

    Article  Google Scholar 

  16. Hughes, L., Mackay, D., Powell, D. E., & Kim, J. (2012). An updated state of the science EQC model for evaluating chemical fate in the environment: application to D5 (decamethylcyclopentasiloxane). Chemosphere, 87, 118–124.

    CAS  Article  Google Scholar 

  17. Jury, W. A., Spencer, W. F., & Farmer, W. F. (1983). Behavior assessment models for trace organics in soil: I model description. Environ. Qual., 12, 558–564.

    CAS  Article  Google Scholar 

  18. Kenaga, E. E., Whitney, W. K., Hardy, J. L., & Doty, A. E. (1965). Laboratory tests with Dursban insecticide. J Econ Entomol, 58, 1043–1050.

    CAS  Google Scholar 

  19. Mackay, D. (2001). Multimedia environmental models: The fugacity approach (2nd ed.). Boca Raton: Lewis Publishers.

    Book  Google Scholar 

  20. Mackay, D., & Diamond, M. (1989). Application of the QWASI (Quantitative Water Air Sediment Interaction) fugacity model to the dynamics of organic and inorganic chemicals in lakes. Chemosphere, 18, 1343–1365.

    CAS  Article  Google Scholar 

  21. Mackay, D., & Paterson, S. (1991). Evaluating the multimedia fate of organic chemicals: a level III fugacity model. Environ Sci Technol, 25, 427–436.

    CAS  Article  Google Scholar 

  22. Mackay, D., Di Guardo, A., Paterson, S., & Cowan, C. E. (1996a). Evaluating the environmental fate of a variety of types of chemicals using the EQC model. Environ Toxicol Chem, 15, 1627–1637.

    CAS  Article  Google Scholar 

  23. Mackay, D., Di Guardo, A., Paterson, S., Kicsi, G., Cowan, C. E., & Kane, D. M. (1996b). Assessment of chemical fate in the environment using evaluative, regional and local scale models: illustrative application to chlorobenzenes and linear alkylbenzene sulfonates. Environ Toxicol Chem, 15, 1638–1648.

    CAS  Article  Google Scholar 

  24. Müller, K., Magesan, G. N., & Bolan, N. S. (2007). A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agr Ecosyst Environ, 120, 93–116.

    Article  Google Scholar 

  25. Ngan, C., Cheah, U., Abdullah, W., Lim, K., & Ismail, B. (2005). Fate of chlorothalonil, chlorpyrifos and profenofos in a vegetable farm in Cameron Highlands Malaysia. Water Air Soil Pollut Focus, 5, 125–136.

    CAS  Article  Google Scholar 

  26. Nobel, P. S. (1991). Physicochemical and environmental plant physiology. San Diego: Academic.

    Google Scholar 

  27. Oliver, G. R., McKellar, R. L., Woodburn, K. B., Eger, J. E., McGee, G. G., & Ordiway, T. R. (1987). Field dissipation and leaching study for chlorpyrifos in Florida citrus. Rep. GH-C 1870. Midland: Dow Chemical USA.

    Google Scholar 

  28. Oskam, I. C., Ropstad, E., Lie, E., Derocher, A. E., Wiig, Ø., Dahl, E., Larsen, S., & Skaare, J. U. (2004). Organochlorines affect the steroid hormone cortisol in free-ranging polar bears (Ursus maritimus) at Svalbard Norway. Toxicol Environ Health, 67, 959–977.

    CAS  Article  Google Scholar 

  29. Padovani, L., Trevisan, M., & Capri, E. (2004). A calculation procedure to assess potential environmental risk of pesticides at the farm level. Ecol Indic, 4, 111–123.

    CAS  Article  Google Scholar 

  30. Racke, K. D. (1993). Environmental fate of chlorpyrifos. Rev Environ Contam Toxicol, 13, 1–150.

    Google Scholar 

  31. Renaud, F. G., Bellamy, P. H., & Brown, C. D. (2008). Simulating pesticides in ditches to assess ecological risk (SPIDER): I Model description. Sci Total Environ, 394, 112–123.

    CAS  Article  Google Scholar 

  32. Reus, J., Leendertse, P., Bockstaller, C., Fomsgaard, I., Gutsche, V., Lewis, K., Nilsson, C., Pussemier, L., Trevisan, M., Van der Werf, H., Alfarroba, F., Blumel, S., Isart, J., McGrath, D., & Seppala, T. (2002). Comparison and evaluation of eight pesticide environmental risk indicators developed in Europe and recommendations for future use. Agric Ecosyst Environ, 90, 177–187.

    Article  Google Scholar 

  33. Riederer, M. (1995). Partitioning and transport of organic chemicals between the atmospheric environment and leaves. In S. Trapp & J. McFarlane (Eds.), Plant contamination, modeling and simulation of organic chemical processes (pp. 153–190). Boca Raton: Lewis Publishers.

    Google Scholar 

  34. Sánchez-Bayo, F., Baskaran, S., & Kennedy, I. R. (2002). Ecological relative risk (EcoRR): another approach for risk assessment of pesticides in agriculture. Agric Ecosyst Environ, 91, 37–57.

    Article  Google Scholar 

  35. Sieber, S., Pannell, D., Müller, K., Holm-Müller, K., Kreins, P., & Gutsche, V. (2010). Modelling pesticide risk: a marginal cost-benefit analysis of an environmental buffer-zone programme. Land Use Policy, 27, 653–661.

    Article  Google Scholar 

  36. Smith, G. N., Watson, B. S., & Fischer, F. S. (1967). Metabolism investigations on dursban insecticide. Metabolism of [36Cl]0,O-Diethyl 0–3,5,6-trichloro-2-pyridyl phosphorothioate in rats. Agric Food Chem, 15, 132–133.

    CAS  Article  Google Scholar 

  37. Sparling, D. W., Fellers, G. M., & McConnell, L. L. (2001). Pesticides and amphibian population declines in California USA. Environ Toxicol Chem, 20, 1591–1595.

    CAS  Article  Google Scholar 

  38. Van den Berg, F., Kubiak, R., & Benjey, W. G. (1999). Emission of pesticides into the air. Water Air Soil Pollut, 115, 195–218.

    Article  Google Scholar 

  39. Waite, D. T., Sommerstad, H., Grover, R., Kerr, L., & Westcott, N. D. (1992). Pesticides in ground water, surface water and spring runoff in a small Saskatchewan watershed. Environ Toxiccol Chem, 11, 741–748.

    CAS  Article  Google Scholar 

  40. Wang, C., Feng, Y., Zhao, S., & Li, B. (2012). A dynamic contaminant fate model of organic compound: a case study of nitrobenzene pollution in Songhua River, China. Chemosphere, 88, 69–76.

    CAS  Article  Google Scholar 

  41. Wania, F., Breivik, K., Persson, N. J., & McLachlan, M. S. (2006). CoZMo-POP 2 – A fugacity-based dynamic multi-compartmental mass balance model of the fate of persistent organic pollutants. Environ Model Softw, 21, 868–884.

    Article  Google Scholar 

  42. Warren, C. S., Mackay, D., Bahadur, N. P., & Boocock, D. G. B. (2002). A suite of multi-segment fugacity models describing the fate of organic contaminants in aquatic systems: application to the Rihand Reservoir. India Water Res, 36, 4341–4355.

    CAS  Article  Google Scholar 

  43. Yao, Y., Tuduri, L., Harner, T., Blanchard, P., Waite, D., Poissant, L., Murphy, C., Belzer, W., Aulagnier, F., Li, Y., & Sverko, E. (2006). Spatial and temporal distribution of pesticide air concentrations in Canadian agricultural regions. Atmos Environ, 40, 4339–4351.

    CAS  Article  Google Scholar 

  44. Yet-Pole, I., & Te-Lung, C. (2008). The development of a 3D risk analysis method. Hazard Mater, 153, 600–608.

    Article  Google Scholar 

  45. Zabik, J. M., & Seiber, J. N. (1993). Atmospheric transport of organophosphate pesticides from California's Central Valley to the Sierra Nevada mountains. J Environ Qual, 22, 80–90.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Batiha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Batiha, M.A., Al-Makhadmeh, L.A., Batiha, M.M. et al. Generalization of the MAFRAM Methodology for Semi-Volatile Organic Agro-Chemicals. Water Air Soil Pollut 225, 1789 (2014). https://doi.org/10.1007/s11270-013-1789-5

Download citation

Keywords

  • Environmental fate prediction
  • Ecotoxicological risk assessment
  • Multimedia model
  • Semi-volatile organic chemicals
  • Model validation problems