Skip to main content

Advertisement

Log in

Mineralization of Gaseous CO2 by Bacillus megaterium in Close Environment System

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Implication of ureolytic biocalcification process as an efficient carbon dioxide sequestration technology was evaluated with Bacillus megaterium culture growing in a closed environment system. In three experimental sets containing either 35 % v/v CO2 in headspace (set 1) or 50 mM urea in solution (set 3) or both (set 2), change in headspace CO2, soluble calcium, and pH were monitored during 8 days of incubation. In absence of urea, headspace CO2 content continued to increase in set 1 (up to 48 % v/v) without any carbonate precipitation. However, carbonate precipitation were obvious in urea containing sets (sets 2 and 3) utilizing all the added calcium (25 mM) in just 2 and 6 days, respectively. No headspace CO2 could be detected in set 2 at the end of experimental period, and analysis suggested that this was majorly (>53 %) attributed to the solubility trapping phenomenon. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis revealed that the precipitates were made up of calcite and major fraction of vaterite polymorph of CaCO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA (2005). Standard methods for examinations of water and wastewater (21st ed.) Washington, DC

  • Cacchio, P., Contento, R., Ercole, C., Cappuccio, G., Martinez, M. P., & Lepidi, A. (2004). Involvement of microorganisms in the formation of carbonate speleothems in the Cervo cave (l'Aquila–Italy). Geomicrobiol Journal, 21, 497–509.

    Article  CAS  Google Scholar 

  • Chou, C., Seagren, E., Aydilek, A., & Lai, M. (2011). Biocalcification of sand through ureolysis. Journal of Geotechnical and Geoenvironmental Engineering, 137, 1179–1189.

    Article  CAS  Google Scholar 

  • De Muynck, W., Debrouwer, D., Belie, N. D., & Verstraete, W. (2008). Bacterial carbonate precipitation improves the durability of cementitious materials. Cement and Concrete Research, 38, 1005–1014.

    Article  CAS  Google Scholar 

  • De Vrind-de, Jong E. W. & de Vrind, J. P. M. (1997). Algal deposition of carbonates and silica. In: Banfiel J. F., Nealson K. H. (Eds.) Geomicrobiology: interactions between microbes and minerals. Reviews in Mineralogy, 35, 267–307.

  • Dittrich, M., Kurz, P., & Wehrli, B. (2004). The role of autotrophic picocyanobacteria in calcite precipitation in an oligotrophic lake. Geomicrobiology Journal, 21, 45–53.

    Article  CAS  Google Scholar 

  • Dittrich, M., Müller, B., Mavrocordatos, D., & Wehrli, B. (2003). Induced calcite precipitation by Cyanobacterium synechococcus. Acta Hydrochimica et Hydrobiologica, 31, 162–169.

    Article  CAS  Google Scholar 

  • Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Annual Review of Marine Science, 1, 169–192.

    Article  Google Scholar 

  • Fujita, Y., Ferris, F. G., Lawson, R. D., Colwell, F. S., & Smith, R. W. (2000). Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol Journal, 17, 305–318.

    Article  CAS  Google Scholar 

  • Gorna, K., Hund, M., Vucak, M., Gröhn, F., & Wegner, G. (2008). Amorphous calcium carbonate in form of spherical nanosized particles and its application as fillers for polymers. Materials Science and Engineering A, 477, 217–225.

    Article  Google Scholar 

  • Hammes, F., & Verstraete, W. (2002). Key role of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1, 3–7.

    Article  CAS  Google Scholar 

  • Jones, A. G. (2002). Crystallization process systems. Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Kirboga, S., & Öner, M. (2013). Investigation of calcium carbonate precipitation in the presence of carboxymethyl inulin. Cryst Eng Comm, 15, 3678–3686.

    Article  CAS  Google Scholar 

  • Langdon, C., Broecker, W. S., Hammond, D. E., Glenn, E., Fitzsimmons, K., et al. (2003). Effect of elevated CO2 on the community metabolism of an experimental coral reef. Global Biogeochemical Cycles, 17, 1011.

    Article  Google Scholar 

  • Lim, M., Han, G.-C., Ahn, J.-W., & You, K.-S. (2010). Environmental remediation and conversion of carbon dioxide (CO2) into useful green products by accelerated carbonation technology. International Journal of Environmental Research and Public Health, 7, 203–228.

    Article  CAS  Google Scholar 

  • Marvasi, M., Gallagher, K. L., Martinez, L. C., Pagan, W. C. M., Rodríguez Santiago, R. E., Vega, G. C., et al. (2012). Importance of B4 medium in determining organomineralization potential of bacterial environmental isolates. Geomicrobiology Journal, 29, 916–924.

    Article  CAS  Google Scholar 

  • Mitchell, A. C., Dideriksen, K., Spangler, L. H., Cunningham, A. B., & Gerlach, R. (2010). Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping. Environmental Scienceand Technology, 44, 5270–5276.

    Article  CAS  Google Scholar 

  • Mitchell, A. C., & Ferris, F. G. (2005). The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence. Geochimica et Cosmochimica Acta, 69, 4199–4210.

    Article  CAS  Google Scholar 

  • Rivadeneyra, M. A., Parraga, J., Delgado, R., Ramos-Cormenzana, A., & Delgado, G. (2004). Biomineralization of carbonates by Halobacillus trueperi in solid and in liquid media with different salinities. FEMS Microbiology Ecology, 48, 39–46.

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro, C., Jimenez-Lopez, C., Rodriguez-Navarro, A., Gonzalez-Muñoz, M. T., & Rodriguez-Gallego, M. (2007). Bacterially mediated mineralization of vaterite. Geochimica et Cosmochimica Acta, 71, 1197–1213.

    Article  CAS  Google Scholar 

  • Sarda, D., Choonia, H. S., Sarode, D. D., & Lele, S. S. (2009). Biocalcification by Bacillus pasteurii urease: a novel application. Journal of Industrial Microbiology and Biotechnology, 36, 1111–1115.

    Article  CAS  Google Scholar 

  • Shen, Y., Xie, A., Chen, Z., Xu, W., Yao, H., Li, S., et al. (2007). Controlled synthesis of calcium carbonate nanocrystals with multi-morphologies in different bicontinuous microemulsions. Materials Science and Engineering A, 443, 95–100.

    Article  Google Scholar 

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., et al. (2007). Climate Change 2007: The physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. New York: Cambridge Univ. Press.

    Google Scholar 

  • Van Lith, Y., Warthmann, R., Vasconcelos, C., & Mckenzie, J. A. (2003). Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology, 1, 71–79.

    Article  Google Scholar 

  • Zamarreno, D. V., Inkpen, R., & May, E. (2009a). Influence of temperature on biocalcification by non-sporing freshwater bacteria. Geomicrobiology Journal, 26, 1–12.

    Article  Google Scholar 

  • Zamarreno, D. V., May, E., & Inkpen, R. (2009b). Influence of environmental temperature on biocalcification by non-sporing freshwater bacteria. Geomicrobiology Journal, 26, 298–309.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was financially supported by NRF on development of biomimetic technology for acid soil rehabilitation using biocalcification process along with partial contribution of INHA University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Gyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Kim, C.G. & Mahanty, B. Mineralization of Gaseous CO2 by Bacillus megaterium in Close Environment System. Water Air Soil Pollut 225, 1787 (2014). https://doi.org/10.1007/s11270-013-1787-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1787-7

Keywords

Navigation