Water, Air, & Soil Pollution

, 225:1785 | Cite as

Predominance of Dehalococcoides in the presence of different sulfate concentrations

  • Iraklis PanagiotakisEmail author
  • Daniel Mamais
  • Marina Pantazidou
  • Simona Rossetti
  • Federico Aulenta
  • Valter Tandoi


This is the first study that investigates in detail the effect of different sulfate concentrations on trichloroethene-dechlorinating microbial communities, both in terms of dechlorinating performance and microbial composition. The study used a series of Dehalococcoides-containing trichloroethene-dechlorinating microbial communities, which operated for more than 800 days in the presence of different sulfate concentrations and limiting-electron donor conditions. This study proves the ability of Dehalococcoides spp., the only genus able to completely dechlorinate trichloroethene, to predominate in mixed anaerobic microbial communities regardless of the magnitude of sulfate concentration, even under limiting-electron donor conditions. Although other microorganisms, such as the Sulfurospirillum spp. bacteria and members of the sulfate-reducing bacteria group were able to thrive, they were not able to predominate in such a competitive environment. However, this picture was not reflected in reductive dechlorination, which demonstrated a much better performance under methanogenic conditions or in the presence of low sulfate concentration (30 mg/l) than in the presence of higher sulfate concentrations (>400 mg/l). Therefore, different species of Dehalococcoides or other dechlorinating bacteria, which are not able to thrive in the presence of high sulfate concentrations (>400 mg/l), are possibly responsible for the higher dechlorination efficiency that was observed under methanogenic conditions.


Dehalococcoides Trichloroethene Sulfate reduction Reductive dechlorination FISH 



This research was partially supported by a 3-year scholarship granted to Iraklis Panagiotakis by the Department of Water Resources and Environmental Engineering of the School of Civil Engineering of the National Technical University of Athens.


  1. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., & Stahl, D. A. (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and Environmental Microbiology, 56, 1919–1925.Google Scholar
  2. Aulenta, F., Gossett, J. M., Petrangeli Papini, M., Rossetti, S., & Majone, M. (2005). Comparative study of methanol, butyrate, and hydrogen as electron donors for long-term dechlorination of tetrachloroethene in mixed anaerobic cultures. Biotechnology and Bioengineering, 91, 743–753.CrossRefGoogle Scholar
  3. Aulenta, F., Majone, M., & Tandoi, V. (2006). Review: enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. Journal of Chemical Technology and Biotechnology, 81, 1463–1474.CrossRefGoogle Scholar
  4. Aulenta, F., Beccari, M., Majone, M., Petrangeli Papini, M., & Tandoi, V. (2008). Competition for H2 between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures. Process Biochemistry, 43, 161–168.CrossRefGoogle Scholar
  5. Ballapragada, B. S., Stensel, H. D., Puhakka, J. A., & Ferguson, J. F. (1997). Effect of hydrogen on reductive dechlorination of chlorinated ethenes. Environmental Science and Technology, 31, 1728–1734.CrossRefGoogle Scholar
  6. Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., et al. (2002). The IWA anaerobic digestion model No 1 (ADM1). Water Science and Technology, 45, 65–73.Google Scholar
  7. Bradley, P. M., & Chapelle, F. H. (2010). Biodegradation of chlorinated ethenes. In H. F. Stroo & C. H. Ward (Eds.), In situ remediation of chlorinated solvent plumes (pp. 39–67). New York: Springer.CrossRefGoogle Scholar
  8. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99, 4044–4064.CrossRefGoogle Scholar
  9. Cupples, A. M., Spormann, A. M., & McCarty, P. L. (2003). Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Applied and Environmental Microbiology, 69, 953–959.CrossRefGoogle Scholar
  10. Daims, H., Bruhl, A., Amann, R., Schleifer, K. H., & Wagner, M. (1999). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Systematic and Applied Microbiology, 22, 434–444.CrossRefGoogle Scholar
  11. El Mamouni, R., Jacquet, R., Gerin, P., & Agathos, S. N. (2002). Influence of electron donors and acceptors on the bioremediation of soil contaminated with trichloroethene. Water Science and Technology, 45, 49–54.Google Scholar
  12. Fennell, D.E., Gossett, J.M. (2003). Microcosms for site-specific evaluation of enhanced biological reductive dehalogenation. In M.M. Häggblom and I.D. Bossert (Ed.), Dehalogenation, microbial processes and environmental applications (pp 385–420), KluwerGoogle Scholar
  13. Fennell, D. E., Gossett, J.M., & Zinder, S. H. (1997). Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene, Environmental Science and Technology, 31, 918–926.Google Scholar
  14. Gossett, J. M. (1987). Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons. Environmental Science and Technology, 21, 202–208.CrossRefGoogle Scholar
  15. Hattori, S. (2008). Minireview, syntrophic acetate-oxidizing in methanogenic environments. Microbes and Environments, 23, 118–127.CrossRefGoogle Scholar
  16. He, J., Ritalahti, K. M., Yang, K. L., Koenigsberg, S. S., & Löffler, F. E. (2003). Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 424, 62–65.CrossRefGoogle Scholar
  17. He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K. M., & Löffler, F. E. (2005). Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environmental Microbiology, 7, 1442–1450.CrossRefGoogle Scholar
  18. He, Y. T., Wilson, J. T., & Wilkin, R. T. (2010). Impact of iron sulfide transformation on trichloroethylene degradation. Geochimica et Cosmochimica Acta, 74, 2025–2039.CrossRefGoogle Scholar
  19. Heimann, A. C., Friis, A. K., & Jakobsen, R. (2005). Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply. Water Research, 39, 3579–3586.CrossRefGoogle Scholar
  20. Heimann, A. C., Batstone, D. J., & Jakobsen, R. (2006). Methanosarcina spp. drive vinyl chloride dechlorination via interspecies hydrogen transfer. Applied and Environmental Microbiology, 72, 2942–2949.CrossRefGoogle Scholar
  21. Hendrickson, E. R., Payne, J. A., Young, R. M., Starr, M. G., Perry, M. P., Fahnestock, S., et al. (2002). Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Applied and Environmental Microbiology, 68, 485–495.CrossRefGoogle Scholar
  22. Hoelen, T. P., & Reinhard, M. (2004). Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. Biodegradation, 15, 395–403.CrossRefGoogle Scholar
  23. Jackson, R. E. (2004). Recognizing emerging environmental problems: the case of chlorinated solvents in groundwater. Technology and Culture, 45, 55–79.CrossRefGoogle Scholar
  24. Krumholz, L. R., Sharp, R., & Fishbain, S. (1996). A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Applied and Environmental Microbiology, 62, 4108–4113.Google Scholar
  25. Kuever, J., Raney, F.A., Widdel, F. (2005a). Genus I. Desulfobacter, Bergey’s Manual of Systematic Bacteriology, Vol. 2: The Proteobacteria, Parts A–C, pp 961–964.Google Scholar
  26. Kuever, J., Raney, F.A., Widdel, F. (2005b). Genus VI. Desulfococcus, Bergey’s Manual of Systematic Bacteriology, Vol. 2: The Proteobacteria, Parts A–C, pp 1030–1031.Google Scholar
  27. Lücker, S., Steger, D., Kjeldsen, K. U., MacGregor, B. J., Wagner, M., & Loy, A. (2007). Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization. Journal of Microbiological Methods, 69, 523–528.CrossRefGoogle Scholar
  28. Mamais, D., Noutsopoulos, C., Andreadakis, A., Droubogianni, J., Georgakopoulos, A., & Mariolos, J. (2007). Optimization of nitrogen removal and start-up of Psyttalia sewage treatment works. Environmental Technology, 28, 129–136.CrossRefGoogle Scholar
  29. Maymó-Gatell, X., Chien, Y. T., Gossett, J. M., & Zinder, S. H. (1997). Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science, 276, 1568–1571.CrossRefGoogle Scholar
  30. Moran, J. M., Zogorski, J. S., & Squillace, P. J. (2007). Chlorinated solvents in groundwater of the United States. Environmental Science and Technology, 41, 74–81.CrossRefGoogle Scholar
  31. Panagiotakis, I., Mamais, D., Pantazidou, M., Marneri, M., Parapouli, M., Hatziloukas, E., et al. (2007). Dechlorinating ability of TCE-fed microcosms with different electron donors. Journal of Hazardous Materials, 149, 582–589.CrossRefGoogle Scholar
  32. Pantazidou, M., Panagiotakis, I., Mamais, D., & Zikidi, V. (2011). Chloroethene biotransformation in the presence of different sulfate concentrations. Ground Water Monitoring and Remediation, 32, 106–119.CrossRefGoogle Scholar
  33. Pernthaler, J., Glockner, F. O., Schonhuber, W., & Amann, R. (2001). Fluorescence in situ hybridization (FISH) with rRNA-target oligonucleotide probes. Methods in Microbiology, 30, 207–226.Google Scholar
  34. Rossetti, S., Aulenta, F., Majone, M., Crocetti, G., & Tandoi, V. (2008). Structure analysis and performance of a microbial community from a contaminated aquifer involved in the complete reductive dechlorination of 1,1,2,2-tetrachloroethane to ethene. Biotechnology and Bioengineering, 100, 240–249.CrossRefGoogle Scholar
  35. Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation, Microbiology and Molecular Biology Reviews, 61, 262–280.Google Scholar
  36. Smatlak, C. R., Gossett, J. M., & Zinder, S. H. (1996). Comparison kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environmental Science and Technology, 30, 2850–2858.CrossRefGoogle Scholar
  37. Stahl, D. A., & Amann, R. (1991). Development and application of nucleic acid probes. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 205–248). Chichester: Wiley.Google Scholar
  38. Stams, A. J. M., Plugge, C. M., de Bok, F. A. M., van Houten, B. H. G. W., Lens, P., Dijkman, H., et al. (2005). Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Water Science and Technology, 52, 13–20.Google Scholar
  39. Sung, Y., Ritalahti, K. M., Sanford, R. A., Urbance, J. W., Flynn, S. J., Tiedje, J. M., et al. (2003). Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Applied and Environmental Microbiology, 69, 2964–2974.CrossRefGoogle Scholar
  40. Sung, Y., Ritalahti, K. M., Apkarian, R. P., & Löffler, F. E. (2006). Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Applied and Environmental Microbiology, 72, 1980–1987.CrossRefGoogle Scholar
  41. Thauer, R. K., Jungermann, K., & Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria, Bacteriological Review, 41, 100–180.Google Scholar
  42. Wiedemeier, T. H., Swanson, M. A., Moutoux, D. E., Gordon, E. K., Wilson, J. T., Wilson, B. H., et al. (1998). Technical protocol for evaluating natural attenuation of chlorinated solvents in groundwater. EPA/600/R-98/128, USEPA. Washington, DC: U.S. Government Printing Office.Google Scholar
  43. Yang, Y., & McCarty, P. L. (1998). Competition for hydrogen within a chlorinated solvent dechlorinating anaerobic mixed culture. Environmental Science and Technology, 32, 3591–3597.CrossRefGoogle Scholar
  44. Yang, Y., & McCarty, P. L. (2000). Biological enhanced dissolution of tetrachloroethene DNAPL. Environmental Science and Technology, 34, 2979–2984.CrossRefGoogle Scholar
  45. Yang, Y., & Zeyer, J. (2003). Specific detection of Dehalococcoides species by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes. Applied and Environmental Microbiology, 69, 2879–2883.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Iraklis Panagiotakis
    • 1
    Email author
  • Daniel Mamais
    • 1
  • Marina Pantazidou
    • 1
  • Simona Rossetti
    • 2
  • Federico Aulenta
    • 2
  • Valter Tandoi
    • 2
  1. 1.School of Civil EngineeringNational Technical University of AthensZografouGreece
  2. 2.Water Research InstituteNational Research Council (IRSA-CNR)MonterotondoItaly

Personalised recommendations