Skip to main content
Log in

Predominance of Dehalococcoides in the presence of different sulfate concentrations

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This is the first study that investigates in detail the effect of different sulfate concentrations on trichloroethene-dechlorinating microbial communities, both in terms of dechlorinating performance and microbial composition. The study used a series of Dehalococcoides-containing trichloroethene-dechlorinating microbial communities, which operated for more than 800 days in the presence of different sulfate concentrations and limiting-electron donor conditions. This study proves the ability of Dehalococcoides spp., the only genus able to completely dechlorinate trichloroethene, to predominate in mixed anaerobic microbial communities regardless of the magnitude of sulfate concentration, even under limiting-electron donor conditions. Although other microorganisms, such as the Sulfurospirillum spp. bacteria and members of the sulfate-reducing bacteria group were able to thrive, they were not able to predominate in such a competitive environment. However, this picture was not reflected in reductive dechlorination, which demonstrated a much better performance under methanogenic conditions or in the presence of low sulfate concentration (30 mg/l) than in the presence of higher sulfate concentrations (>400 mg/l). Therefore, different species of Dehalococcoides or other dechlorinating bacteria, which are not able to thrive in the presence of high sulfate concentrations (>400 mg/l), are possibly responsible for the higher dechlorination efficiency that was observed under methanogenic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., & Stahl, D. A. (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and Environmental Microbiology, 56, 1919–1925.

    CAS  Google Scholar 

  • Aulenta, F., Gossett, J. M., Petrangeli Papini, M., Rossetti, S., & Majone, M. (2005). Comparative study of methanol, butyrate, and hydrogen as electron donors for long-term dechlorination of tetrachloroethene in mixed anaerobic cultures. Biotechnology and Bioengineering, 91, 743–753.

    Article  CAS  Google Scholar 

  • Aulenta, F., Majone, M., & Tandoi, V. (2006). Review: enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. Journal of Chemical Technology and Biotechnology, 81, 1463–1474.

    Article  CAS  Google Scholar 

  • Aulenta, F., Beccari, M., Majone, M., Petrangeli Papini, M., & Tandoi, V. (2008). Competition for H2 between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures. Process Biochemistry, 43, 161–168.

    Article  CAS  Google Scholar 

  • Ballapragada, B. S., Stensel, H. D., Puhakka, J. A., & Ferguson, J. F. (1997). Effect of hydrogen on reductive dechlorination of chlorinated ethenes. Environmental Science and Technology, 31, 1728–1734.

    Article  CAS  Google Scholar 

  • Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., et al. (2002). The IWA anaerobic digestion model No 1 (ADM1). Water Science and Technology, 45, 65–73.

    CAS  Google Scholar 

  • Bradley, P. M., & Chapelle, F. H. (2010). Biodegradation of chlorinated ethenes. In H. F. Stroo & C. H. Ward (Eds.), In situ remediation of chlorinated solvent plumes (pp. 39–67). New York: Springer.

    Chapter  Google Scholar 

  • Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99, 4044–4064.

    Article  CAS  Google Scholar 

  • Cupples, A. M., Spormann, A. M., & McCarty, P. L. (2003). Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Applied and Environmental Microbiology, 69, 953–959.

    Article  CAS  Google Scholar 

  • Daims, H., Bruhl, A., Amann, R., Schleifer, K. H., & Wagner, M. (1999). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Systematic and Applied Microbiology, 22, 434–444.

    Article  CAS  Google Scholar 

  • El Mamouni, R., Jacquet, R., Gerin, P., & Agathos, S. N. (2002). Influence of electron donors and acceptors on the bioremediation of soil contaminated with trichloroethene. Water Science and Technology, 45, 49–54.

    Google Scholar 

  • Fennell, D.E., Gossett, J.M. (2003). Microcosms for site-specific evaluation of enhanced biological reductive dehalogenation. In M.M. Häggblom and I.D. Bossert (Ed.), Dehalogenation, microbial processes and environmental applications (pp 385–420), Kluwer

  • Fennell, D. E., Gossett, J.M., & Zinder, S. H. (1997). Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene, Environmental Science and Technology, 31, 918–926.

    Google Scholar 

  • Gossett, J. M. (1987). Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons. Environmental Science and Technology, 21, 202–208.

    Article  CAS  Google Scholar 

  • Hattori, S. (2008). Minireview, syntrophic acetate-oxidizing in methanogenic environments. Microbes and Environments, 23, 118–127.

    Article  Google Scholar 

  • He, J., Ritalahti, K. M., Yang, K. L., Koenigsberg, S. S., & Löffler, F. E. (2003). Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 424, 62–65.

    Article  CAS  Google Scholar 

  • He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K. M., & Löffler, F. E. (2005). Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environmental Microbiology, 7, 1442–1450.

    Article  CAS  Google Scholar 

  • He, Y. T., Wilson, J. T., & Wilkin, R. T. (2010). Impact of iron sulfide transformation on trichloroethylene degradation. Geochimica et Cosmochimica Acta, 74, 2025–2039.

    Article  CAS  Google Scholar 

  • Heimann, A. C., Friis, A. K., & Jakobsen, R. (2005). Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply. Water Research, 39, 3579–3586.

    Article  CAS  Google Scholar 

  • Heimann, A. C., Batstone, D. J., & Jakobsen, R. (2006). Methanosarcina spp. drive vinyl chloride dechlorination via interspecies hydrogen transfer. Applied and Environmental Microbiology, 72, 2942–2949.

    Article  CAS  Google Scholar 

  • Hendrickson, E. R., Payne, J. A., Young, R. M., Starr, M. G., Perry, M. P., Fahnestock, S., et al. (2002). Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Applied and Environmental Microbiology, 68, 485–495.

    Article  CAS  Google Scholar 

  • Hoelen, T. P., & Reinhard, M. (2004). Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. Biodegradation, 15, 395–403.

    Article  CAS  Google Scholar 

  • Jackson, R. E. (2004). Recognizing emerging environmental problems: the case of chlorinated solvents in groundwater. Technology and Culture, 45, 55–79.

    Article  Google Scholar 

  • Krumholz, L. R., Sharp, R., & Fishbain, S. (1996). A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Applied and Environmental Microbiology, 62, 4108–4113.

    CAS  Google Scholar 

  • Kuever, J., Raney, F.A., Widdel, F. (2005a). Genus I. Desulfobacter, Bergey’s Manual of Systematic Bacteriology, Vol. 2: The Proteobacteria, Parts A–C, pp 961–964.

  • Kuever, J., Raney, F.A., Widdel, F. (2005b). Genus VI. Desulfococcus, Bergey’s Manual of Systematic Bacteriology, Vol. 2: The Proteobacteria, Parts A–C, pp 1030–1031.

  • Lücker, S., Steger, D., Kjeldsen, K. U., MacGregor, B. J., Wagner, M., & Loy, A. (2007). Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization. Journal of Microbiological Methods, 69, 523–528.

    Article  Google Scholar 

  • Mamais, D., Noutsopoulos, C., Andreadakis, A., Droubogianni, J., Georgakopoulos, A., & Mariolos, J. (2007). Optimization of nitrogen removal and start-up of Psyttalia sewage treatment works. Environmental Technology, 28, 129–136.

    Article  CAS  Google Scholar 

  • Maymó-Gatell, X., Chien, Y. T., Gossett, J. M., & Zinder, S. H. (1997). Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science, 276, 1568–1571.

    Article  Google Scholar 

  • Moran, J. M., Zogorski, J. S., & Squillace, P. J. (2007). Chlorinated solvents in groundwater of the United States. Environmental Science and Technology, 41, 74–81.

    Article  CAS  Google Scholar 

  • Panagiotakis, I., Mamais, D., Pantazidou, M., Marneri, M., Parapouli, M., Hatziloukas, E., et al. (2007). Dechlorinating ability of TCE-fed microcosms with different electron donors. Journal of Hazardous Materials, 149, 582–589.

    Article  CAS  Google Scholar 

  • Pantazidou, M., Panagiotakis, I., Mamais, D., & Zikidi, V. (2011). Chloroethene biotransformation in the presence of different sulfate concentrations. Ground Water Monitoring and Remediation, 32, 106–119.

    Article  Google Scholar 

  • Pernthaler, J., Glockner, F. O., Schonhuber, W., & Amann, R. (2001). Fluorescence in situ hybridization (FISH) with rRNA-target oligonucleotide probes. Methods in Microbiology, 30, 207–226.

    CAS  Google Scholar 

  • Rossetti, S., Aulenta, F., Majone, M., Crocetti, G., & Tandoi, V. (2008). Structure analysis and performance of a microbial community from a contaminated aquifer involved in the complete reductive dechlorination of 1,1,2,2-tetrachloroethane to ethene. Biotechnology and Bioengineering, 100, 240–249.

    Article  CAS  Google Scholar 

  • Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation, Microbiology and Molecular Biology Reviews, 61, 262–280.

    Google Scholar 

  • Smatlak, C. R., Gossett, J. M., & Zinder, S. H. (1996). Comparison kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environmental Science and Technology, 30, 2850–2858.

    Article  CAS  Google Scholar 

  • Stahl, D. A., & Amann, R. (1991). Development and application of nucleic acid probes. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 205–248). Chichester: Wiley.

    Google Scholar 

  • Stams, A. J. M., Plugge, C. M., de Bok, F. A. M., van Houten, B. H. G. W., Lens, P., Dijkman, H., et al. (2005). Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Water Science and Technology, 52, 13–20.

    CAS  Google Scholar 

  • Sung, Y., Ritalahti, K. M., Sanford, R. A., Urbance, J. W., Flynn, S. J., Tiedje, J. M., et al. (2003). Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Applied and Environmental Microbiology, 69, 2964–2974.

    Article  CAS  Google Scholar 

  • Sung, Y., Ritalahti, K. M., Apkarian, R. P., & Löffler, F. E. (2006). Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Applied and Environmental Microbiology, 72, 1980–1987.

    Article  CAS  Google Scholar 

  • Thauer, R. K., Jungermann, K., & Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria, Bacteriological Review, 41, 100–180.

    Google Scholar 

  • Wiedemeier, T. H., Swanson, M. A., Moutoux, D. E., Gordon, E. K., Wilson, J. T., Wilson, B. H., et al. (1998). Technical protocol for evaluating natural attenuation of chlorinated solvents in groundwater. EPA/600/R-98/128, USEPA. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Yang, Y., & McCarty, P. L. (1998). Competition for hydrogen within a chlorinated solvent dechlorinating anaerobic mixed culture. Environmental Science and Technology, 32, 3591–3597.

    Article  CAS  Google Scholar 

  • Yang, Y., & McCarty, P. L. (2000). Biological enhanced dissolution of tetrachloroethene DNAPL. Environmental Science and Technology, 34, 2979–2984.

    Article  CAS  Google Scholar 

  • Yang, Y., & Zeyer, J. (2003). Specific detection of Dehalococcoides species by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes. Applied and Environmental Microbiology, 69, 2879–2883.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by a 3-year scholarship granted to Iraklis Panagiotakis by the Department of Water Resources and Environmental Engineering of the School of Civil Engineering of the National Technical University of Athens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraklis Panagiotakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panagiotakis, I., Mamais, D., Pantazidou, M. et al. Predominance of Dehalococcoides in the presence of different sulfate concentrations. Water Air Soil Pollut 225, 1785 (2014). https://doi.org/10.1007/s11270-013-1785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1785-9

Keywords