Skip to main content
Log in

A Case Study of Landfill Workers Exposure and Dose to Particulate Matter-Bound Metals

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The objective of the current study was to estimate the dose in human tissues after inhalation exposure to airborne particulate matter-bound metals at a landfill site. Field measurements have revealed that the 8-h permissible exposure limit set by the Occupational Safety and Health Administration for particulate matter (PM10) was not exceeded for the working personnel at an outdoor weighing facility in the Akrotiri landfill (Chania, Greece). However, PM10 concentrations were exceeding the EU health protection standards (50 μg/m3). Furthermore, dust emanating from landfill operations contains traces of heavy metals due to the nature of materials (e.g., sludge, batteries) which have been deposited over the lifetime of the landfill. In addition, particulate matter-bound metals concentrations at the landfill are enhanced by refuse truck emissions (e.g., exhaust, tire wear dust, brake wear dust, road surface wear dust and resuspension of deposited PM on a road surface) and resuspension from the surface of the composting site. Estimations of particle-bound metals dose in the human body were performed for arsenite (ASIII), lead (Pb) and cadmium (Cd). The Exposure Dose Model (ExDoM) in conjunction with a Physiologically Based PharmacoKinetic (PBPK) model was applied to determine the dose for an adult Caucasian male worker. The ExDoM was used to estimate the human exposure and the deposition, dose, clearance, retention of particulate matter-bound metals in the human respiratory tract and the mass transferred to the gastrointestinal tract and blood. The PBPK model was developed to describe the movement of metals from the blood into the tissues as a blood-flow-limited model. The results showed that after 1 day of exposure to PMAsIII, the major accumulation occurs in the lung, muscle and liver. In addition, for PMPb, the major accumulation occurs in the bone, blood and muscle whereas as regard PMCd the major accumulation occurs in the other tissues (the rest of the body), kidney and liver. The results indicate an increased health risk for an adult Caucasian male worker at the landfill site due to exposure to elevated particulate matter concentrations and their associated metallic content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrafioti, E., Bouras, G., Kalderis, D., & Diamantopoulos, E. (2012). Sewage sludge as a precursor for biochar production. Proceedings of HazWasteManagement, 2012, S25.1.

    Google Scholar 

  • Aleksandropoulou, V., & Lazaridis, M. (2013). Development and application of a model (ExDoM) for calculating the respiratory tract dose and retention of particles under variable exposure conditions. Air Quality, Atmosphere and Health, 6, 13–26.

    Article  CAS  Google Scholar 

  • Allen, A. G., Nemitz, E., Shi, J. P., Harrison, R. M., & Greenwood, J. C. (2001). Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmospheric Environment, 35, 4581–4591.

    Article  CAS  Google Scholar 

  • Alvarez, F. F., Rodriguez, M. T., Espinosa, A. J. F., & Daban, A. G. (2004). Physical speciation of arsenic, mercury, lead, cadmium and nickel in inhalable atmospheric particles. Analytica Chimica Acta, 524, 33–40.

    Article  Google Scholar 

  • ATSDR (2007a) Toxicological profile for arsenic. Agency for Toxic Substance and Disease Registry, Division of Toxicology and Environmental Medicine/Applied Toxicology Branch. Atlanta, Georgia. http://www.atsdr.cdc.gov/ToxProfiles/tp2.pdf. Accessed 2 April 2012.

  • ATSDR (2007b) Toxicological profile for lead. Agency for Toxic Substance and Disease Registry, Division of Toxicology and Environmental Medicine/Applied Toxicology Branch. Atlanta, Georgia. http://www.atsdr.cdc.gov/toxprofiles/tp13.pdf. Accessed 12 October 2012.

  • Ayanda, O. S., Fatoki, O. S., Adekola, F. H., & Ximba, B. J. (2012). Characterization of fly ash generated from Matla power station in Mpumalanga South Africa. E-J Chem, 9, 1788–1795.

    Article  CAS  Google Scholar 

  • Beckett, W. S., Moore, J. L., Keogh, J. P., & Blecker, M. (1986). Acute encephalopathy due to occupational exposure to arsenic. British Journal Indian Medicine, 43, 66–67.

    CAS  Google Scholar 

  • Bradshaw-Pierce, E. L., Eckhardt, S. G., & Gustafson, D. L. (2007). A physiologically based pharmacokinetic model of docetaxel disposition: from mouse to man. Clinical Cancer Research, 13, 2768–2776.

    Article  CAS  Google Scholar 

  • Brima, E. I., Haris, P. I., Jenkins, R. O., Polya, D. A., Gault, A. G., & Harrington, C. F. (2006). Understanding arsenic metabolism through a comparative study of arsenic level in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic group in the United Kingdom. Toxicology and Applied Pharmacology, 216, 112–130.

    Article  Google Scholar 

  • Burnley, S. J. (2007). A review of municipal solid waste composition in the United Kingdom. Waste Management, 27, 1274–1285.

    Article  Google Scholar 

  • Chalvatzaki, E., Kopanakis, I., Kontaksakis, M., Glytsos, T., Kalogerakis, N., & Lazaridis, M. (2010). Measurements of particulate matter concentrations at a landfill site (Crete, Greece). Waste Management, 11, 2058–2064.

    Article  Google Scholar 

  • Chalvatzaki, E., & Lazaridis, M. (2010). Assessment of air pollutant emissions from the Akrotiri landfill site (Chania, Greece). Waste Manage Res, 28, 778–788.

    Article  CAS  Google Scholar 

  • Chalvatzaki, E., Aleksandropoulou, V., Glytsos, T., & Lazaridis, M. (2012). The effect of dust emissions from open storage piles to particle ambient concentration and human exposure. Waste Management, 32, 2456–2468.

    Article  CAS  Google Scholar 

  • Chen, B. C., Chou, W. C., Chen, W. Y., & Liao, C. M. (2010). Assessing the cancer risk associated with arsenic-contaminated seafood. Journal of Hazardous Materials, 181, 161–169.

    Article  CAS  Google Scholar 

  • Chen, C. J., Chiou, H. Y., Huang, W. I., Chen, S. Y., Hsueh, Y. M., Tseng, C. H., et al. (1997). Systemic noncarcinogenic effects and developmental toxicity of inorganic arsenic. In C. O. Abernathy, R. L. Calderon, & W. R. Chappell (Eds.), Arsenic: exposure and health effects (pp. 124–134). London: Chapman & Hall.

    Chapter  Google Scholar 

  • Chen, H., Yan, S. H., Ye, Z. L., Meng, H. J., & Zhu, Y. G. (2012). Utilization of urban sewage sludge: Chinese perspectives. Environmental Science and Pollution Research, 19, 1454–1463.

    Article  CAS  Google Scholar 

  • Chen, H. W. (2007). Exposure and health risk of gallium, indium and arsenic from semiconductor manufacturing industry workers. Bulletin of Environmental Contamination and Toxicology, 78, 5–9.

    Article  CAS  Google Scholar 

  • Chou, W. C., Chio, C. O., & Liao, C. M. (2009). Assessing airborne PM-bound arsenic exposure risk in semiconductor manufacturing facilities. Journal of Hazardous Materials, 167, 976–986.

    Article  CAS  Google Scholar 

  • Christoforidis, A., & Stamatis, N. (2009). Heavy metal contamination in street dust and roadside soil along the major national road in Kavala's region, Greece. Geoderma, 151, 257–263.

    Article  CAS  Google Scholar 

  • Csavina, J., Landázuri, A., Wonaschütz, A., Rine, K., Rheinheimer, P., Barbaris, B., et al. (2011). Metal and metalloid contaminants in atmospheric aerosols from mining operations. Water, Air, and Soil Pollution, 221, 145–157.

    Article  CAS  Google Scholar 

  • Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air (1999) OJ L 163: 41–60.

  • Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air (2005) OJ L 23: 3–16.

  • Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe (2008) OJ L 152: 1–44.

  • EC (2000) Air pollution by As, Cd and Ni compounds. Working Group on As, Cd and Ni compounds. Position Paper, Final Version, DG Environment, p 361.

  • EPA. (1989). Characterization of products containing lead and cadmium in municipal solid waste in the United States, 1970 to 2000. Report EPA/530-SW-89-015B. Washington DC: Office of Solid Waste.

    Google Scholar 

  • EPA (2004) Air quality criteria for particulate matter. Reports EPA/600/P-99/002aF and bF, US Environmental Protection Agency, Research Triangle Park, NC.

  • Espinosa, A. J. F., Rodriguez, M. T., Rosa, F. J. B., & Sanchez, J. C. J. (2001). Size distribution of metals in urban aerosols in Seville (Spain). Atmospheric Environment, 35, 2595–2601.

    Article  CAS  Google Scholar 

  • FAO/WHO (1999) Codex Alimentarious Commission. Draft maximum levels for lead. CX/FAC 00/24. Joint FAO/WHO Food Standards Programme Codex Committee on Food Additives and Contaminants. http://www.inchem.org/documents/jecfa/jecmono/v44jec12.htm. Accessed 7 June 2013.

  • Fitz, D. R., & Bumiller, K. (2000). Evaluation of watering to control dust in high winds. Journal of the Air & Waste Management Association, 50, 570–577.

    Article  CAS  Google Scholar 

  • Gamaletsos, P., Godelitsas, A., Dotsika, E., Tzamos, E., Göttlicher, J., & Filippidis, A. (2013). Geological sources of As in the environment of Greece: a review. In A. Scozzari & E. Dotsika (Eds.), Threats to the quality of groundwater resources: prevention and control. The handbook of environmental chemistry. Berlin: Springer. doi:10.1007/698_2013_230.

    Google Scholar 

  • H.M.E.C.C. (2012) Hellenic Ministry of Environment, Energy and Climate Change Annual Report on Air pollution 2011. http://www.ypeka.gr/Default.aspx?tabid=490&language=el-GR. Accessed 7 June 2013.

  • Han, S., Youn, J. S., & Jung, Y. W. (2011). Characterization of PM10 and PM25 source profiles for resuspended road dust collected using mobile sampling methodology. Atmospheric Environment, 45, 3343–3351.

    Article  CAS  Google Scholar 

  • Herner, J. D., Green, P. G., & Kleeman, M. J. (2006). Measuring the trace elemental composition of size-resolved airborne particles. Environmental Science and Technology, 40, 1925–1933.

    Article  CAS  Google Scholar 

  • Hutton, M., & Symon, C. (1986). The quantities of cadmium, lead, mercury and arsenic entering the UK environment from human activities. The Science of the Total Environment, 57, 129–150.

    Article  CAS  Google Scholar 

  • IARC (2013) Agents classified by the IARC monographs, Volumes 1–107. http://monographs.iarc.fr/ENG/Classification/index.php. Accessed 7 June 2013.

  • ICRP (1994a) Human respiratory tract model for radiological protection. ICRP Publication 66. Pergamon, Oxford.

  • ICRP (1994b) Dose coefficients for intake of radionuclides by workers. ICRP Publication 68. Pergamon, Oxford.

  • ICRP (2003) Human basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. Pergamon, Oxford.

  • Infante, R., & Acosta, I. L. (1991). Size distribution of trace metals in Ponce, Puerto Rico air particulate matter. Atmospheric Environment, 25, 121–131.

    Google Scholar 

  • Karanasiou, A. A., Sitaras, I. E., Siskos, P. A., & Eleftheriadis, K. (2007). Size distribution and sources of trace metals and n-alkanes in the Athens urban aerosol during summer. Atmospheric Environment, 41, 2368–2381.

    Article  CAS  Google Scholar 

  • Kjellstrom, T., & Nordberg, G. F. (1978). A kinetic model of cadmium metabolism in the human being. Environmental Research, 16, 248–269.

    Article  CAS  Google Scholar 

  • Kopanakis, I., Eleftheriadis, K., Mihalopoulos, N., Lydakis-Simantiris, N., Katsivela, E., Pentari, D., et al. (2012). Physico-chemical characteristics of particulate matter in the Eastern Mediterranean. Atmospheric Research, 106, 93–107.

    Article  CAS  Google Scholar 

  • Koshy, L., Jones, T., & Berube, K. (2009). Characterization and bioreactivity of respirable airborne particles from a municipal landfill. Biomarkers, 14(S1), 49–53.

    Article  CAS  Google Scholar 

  • Lazaridis, M., Dzumbova, L., Kopanakis, I., Ondracek, J., Glytsos, T., Aleksandropoulou, V., et al. (2008). PM10 and PM25 levels in the Eastren Meditteranean (Akrotiri Reasearch station, Crete, Greece). Water, Air, and Soil Pollution, 189, 85–101.

    Article  CAS  Google Scholar 

  • Leggett, R. W. (1993). An age-specific kinetic model of lead metabolism in humans. Environmental Health Perspectives, 101, 598–616.

    Article  CAS  Google Scholar 

  • Lenz, T. L. (2010). Pharmacokinetic drug interactions with physical activity. Pharmacy review. Am J Lifestyle Med, 4, 226–229.

    Article  Google Scholar 

  • Liao, C. M., Lin, T. L., & Chen, S. C. (2008). A Weibull-PBPK model for assessing risk of arsenic related children skin lesions. The Science of the Total Environment, 392, 203–217.

    Article  CAS  Google Scholar 

  • Lubin, J., Pottern, L., Stone, B., & Fraumeni, J. (2000). Respiratory cancer in a cohort of copper smelter workers: results from more than 50 years of follow-up. American Journal of Epidemiology, 151, 554–565.

    Article  CAS  Google Scholar 

  • Manalis, N., Grivas, G., Protonotarios, V., Moutsatsou, A., Samara, C., & Chaloulakou, A. (2005). Toxic metal content of particulate matter (PM10), within the greater area of Athens. Chemosphere, 60, 557–566.

    Article  CAS  Google Scholar 

  • Myrkou K., Gidarakos E. (2006) Evolution of the qualitative and quantitative characteristics of solid waste in Chania Prefecture (In Greek). Technical University of Crete, Department of Environmental Engineering. Dissertation DT2006-0108, Central Library of the Technical University of Crete.

  • Nazir, R., Shaheen, N., & Shah, M. H. (2011). Indoor/outdoor relationship of trace metals in the atmospheric particulate matter of an industrial area. Atmospheric Research, 101, 765–772.

    Article  CAS  Google Scholar 

  • O’Flaherty, E. J. (1993). Physiologically based models for bone-seeking elements: IV Kinetics of lead disposition in humans. Toxicology and Applied Pharmacology, 118, 16–29.

    Article  Google Scholar 

  • Occupational Safety and Health Administration (OSHA). Occupational Safety and Health Administration. 29CFR1910. https://www.osha.gov/pls/oshaweb/owastand.display_standard_group?p_toc_level=1&p_part_number=1910.

  • Paoli, L., Corsini, A., Bigagli, V., Vannini, J., Bruskoli, C., & Loppi, S. (2012). Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environmental Pollution, 161, 70–75.

    Article  CAS  Google Scholar 

  • Park, K., & Dam, H. U. (2010). Characterization of metal aerosols in PM10 from urban, industrial, and Asian Dust sources. Environmental Monitoring and Assessment, 160, 289–300.

    Article  CAS  Google Scholar 

  • Poulsen, O. M., Breum, N. O., Ebbehoj, N., Hansen, M., Ivens, U. I., Van Lelieveld, D., et al. (1995). Collection of domestic waste. Review of occupational health problems and their possible causes. The Science of the Total Environment, 170, 1–19.

    Article  CAS  Google Scholar 

  • Protonotarios, V., Petsas, N., & Moutsatsou, A. (2002). Levels and composition of atmospheric particulates (PM10) in a mining-industrial site in the city of Lavrion, Greece. Journal of the Air & Waste Management Association, 52(11), 1263–1273.

    Article  CAS  Google Scholar 

  • Richaud, R., Lachas, H., Lazaro, M.-J., Clarke, L. J., Jarvis, K. E., Herod, A. A., et al. (2000). Trace elements in coal derived liquids: analysis by ICP-MS and Mössbauer spectroscopy. Fuel, 79, 57–67.

    Article  CAS  Google Scholar 

  • Rodas, D. S., Campa, A. S., Oliveira, V., & Rosa, J. (2012). Health implications of the distribution of arsenic species in airborne particulate matter. Journal of Inorganic Biochemistry, 108, 112–114.

    Article  Google Scholar 

  • Samara, C., & Voutsa, D. (2005). Size distribution of airborne particulate matter and associated heavy metals in the roadside environment. Chemosphere, 59, 1197–1206.

    Article  CAS  Google Scholar 

  • Sánchez-Rodas, D., Sánchez de la Campa, A. M., de la Rosa, J. D., Oliveira, V., Gómez-Ariza, J. L., Querol, X., et al. (2007). Arsenic speciation of atmospheric particulate matter (PM10) in an industrialised urban site in southwestern Spain. Chemosphere, 66, 1485–1493.

    Article  Google Scholar 

  • Sasso, A. F., Isukapalli, S. S., & Georgopoulos, P. G. (2010). A generalized physiologically-based toxicokinetic modeling system for chemical mixtures containing metals. Theor Biol Med Modell, 7, 1–17.

    Google Scholar 

  • Serbula, S. M., Antonijevic, M. M., Milosevic, N. M., Milic, S. M., & Ilic, A. A. (2010). Concentrations of particulate matter and arsenic in Bor (Serbia). Journal of Hazardous Materials, 181, 43–51.

    Article  CAS  Google Scholar 

  • Sharma, M., Maheshwari, M., & Morisawa, S. (2005). Dietary and inhalation intake of lead and estimation of blood lead levels in adults and children in Kanpur, India. Risk Analysis, 25, 1573–1588.

    Article  Google Scholar 

  • Slejkovec, Z., Salma, I., van Elteren, J. T., & Zemplén-Papp, E. (2000). Speciation of arsenic in coarse and fine urban aerosols using sequential extraction combined with liquid chromatography and atomic fluorescence detection. Fresenius' Journal of Analytical Chemistry, 366(8), 830–834.

    Article  CAS  Google Scholar 

  • Theodosi, C., Grivas, G., Zarmpas, P., Chaoulakou, A., & Mihalopoulos, N. (2011). Mass and chemical composition of size-segregated aerosols (PM1, PM2.5, PM10) over Athens, Greece: local versus regional sources. Atmos Chem Phys Discuss, 11, 7569–7691.

    Article  Google Scholar 

  • Tsamoutsoglou C. (2008) Determination of parameters and heavy metals in compost material of the municipal solid waste recycling and composting facility (MSWRCF) in Chania. Technological Institute of Crete (In Greek).

  • TSI (2003) Model 8520 DustTRAK Aerosol Monitor Operation and Service Manual.

  • Tsopelas, F., Tsakanika, L. A., & Ochsenkühn-Petropoulou, M. (2008). Extraction of arsenic species from airborne particulate filters—application to an industrial area of Greece. Microchemical Journal, 89(2), 165–170.

    Article  CAS  Google Scholar 

  • Vassilakos, C., Verosb, D., Michopoulosa, J., Maggosa, T., & O'Connorc, C. M. (2007). Estimation of selected heavy metals and arsenic in PM10 aerosols in the ambient air of the Greater Athens Area, Greece. Journal of Hazardous Materials, 140, 389–398.

    Article  CAS  Google Scholar 

  • Veeken, A., & Hamelers, B. (2002). Sources of Cd, Cu, Pb and Zn in biowaste. The Science of the Total Environment, 300, 87–98.

    Article  CAS  Google Scholar 

  • Vega, E., Mugica, V., Reyes, E., Sanchez, G., Chow, J. C., & Watson, J. G. (2001). Chemical composition of fugitive dust emitters in Mexico City. Atmospheric Environment, 35, 4033–4039.

    Article  CAS  Google Scholar 

  • Vicente, A. B., Sanfeliu, T., & Jordan, M. M. (2012). Assessment of PM10 pollution episodes in a ceramic cluster (NE Spain): proposal of a new quality index for PM10, As, Cd, Ni and Pb. Journal of Environmental Management, 108, 92–101.

    Article  CAS  Google Scholar 

  • Vincent, J. H., & Mark, D. (1982). Application of Blunt sampler theory for the definition and measurement of inhalable dust. The Annals of Occupational Hygiene, 26, 3–19.

    Article  CAS  Google Scholar 

  • Wang, G., & Fowler, B. A. (2008). Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxicology and Applied Pharmacology, 233, 92–99.

    Article  CAS  Google Scholar 

  • Wang, X., Sato, T., & Xing, B. (2006). Size distribution and anthropogenic sources apportionment of airborne trace metals in Kanazawa, Japan. Chemosphere, 65, 2440–2448.

    Article  CAS  Google Scholar 

  • WHO (1992) International Programme on Chemical Safety, Environmental Health Criteria 134, Cadmium. Geneva. http://www.inchem.org/documents/ehc/ehc/ehc134.htm. Accessed 7 June 2013.

  • WHO. (1993). Evaluation of certain food additives and contaminants, Forty-first report of Joint FAO/WHO Expert Committee on Food Additives. World Health Organization Technical Report Series, 837, 1–53.

    Google Scholar 

  • WHO. (2000). Air quality guidelines for Europe. 2nd edn. Copenhagen, Denmark: WHO Regional Publications, Regional Office for Europe.

    Google Scholar 

  • WHO. (2006). Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, global update 2005, summary of risk assessment. Geneva: World Health Organization. WHO/SDE/PHE/OEH/06.02.

    Google Scholar 

  • Yang, Y., Xu, X., & Georgopoulos, P. G. (2010). A Bayesian population PBPK model for multiroute chloroform exposure. J Exposure Sci Environ Epidemiol, 20(4), 326–341.

    Article  CAS  Google Scholar 

  • Yu, D. (1999). A physiologically based pharmacokinetic model of inorganic arsenic. Regul Toxicol Pharm, 29, 128–141.

    Article  CAS  Google Scholar 

  • Zhang, Q., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., Jimenez, J. L. (2005) Time and size-resolved chemical composition of submicron particles in Pittsburg—implications for aerosol sources and processes. J Geophys Res D: Atmos 110: D07S09

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lazaridis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalvatzaki, E., Aleksandropoulou, V. & Lazaridis, M. A Case Study of Landfill Workers Exposure and Dose to Particulate Matter-Bound Metals. Water Air Soil Pollut 225, 1782 (2014). https://doi.org/10.1007/s11270-013-1782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1782-z

Keywords

Navigation