Skip to main content
Log in

Optimizing Dye Adsorption Onto a Waste-Derived (Modified Charcoal Ash) Adsorbent Using Box–Behnken and Central Composite Design Procedures

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The objective of this work was to optimize the experimental conditions for adsorption of reactive azo dye using a waste-derived adsorbent, modified charcoal ash. With this aim, Box–Behnken and Central Composite Design models were applied to achieve maximum dye adsorption and minimum operation costs. In the models studied, independent variables were pH (1–12), ash dosage (0.02–0.1 g/50 ml), dye concentration (10–200 mg/L), and operation time (10–130 min). The quadratic models were developed for the predetermined responses (dye removal and operation cost), and it was clearly seen that the experimental data fit well to model predictions statistically (R 2 ≥ 0.89 and “Prob > F” < 0.005). Experimental conditions for optimum dye removal of 90.2 % were determined as pH 2, 0.08 mg/50 ml ash dosage, 80.5 mg/L dye concentration, and 100 min agitation period. Operating cost which includes expenses for modification of adsorbent, arrangement of solution pH, and sample shaking was calculated as 1.17 €/m3 for optimized conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmaruzzaman, M. (2011). Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in Colloid and Interface Science, 166, 36–59.

    CAS  Google Scholar 

  • Annadurai, G., Juang, R. S., & Lee, D. J. (2003). Adsorption of heavy metals from water using banana and orange peels. Water Science and Technology, 47, 185–190.

    CAS  Google Scholar 

  • BOTAS, 2013. http://www.botas.gov.tr/icerik/tur/dogalgaz/boruhatti/dg_tarife.asp. Accessed 1 March 2013.

  • Cimino, G., Passerini, A., & Toscano, G. (2000). Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water Research, 34, 2955–2962.

    Article  CAS  Google Scholar 

  • El-Naas, M. H., Al-Zuhair, S., & Alhaija, M. A. (2010). Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chemical Engineering Journal, 162, 997–1005.

    Article  CAS  Google Scholar 

  • Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G. C., et al. (2007). Box-Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta, 597, 179–186.

    Article  CAS  Google Scholar 

  • Gan, Q., Allen, S. J., & Matthews, R. (2004). Activation of waste MDF sawdust charcoal and its reactive dye adsorption characteristics. Waste Management, 24, 841–888.

    Article  CAS  Google Scholar 

  • Gengec, E., Kobya, M., Demirbas, E., Akyol, A., & Oktor, K. (2012). Optimization of baker’s yeast wastewater using response surface methodology by electrocoagulation. Desalination, 286, 200–209.

    Article  CAS  Google Scholar 

  • Ghanbarzadeh Lak, M., Sabour, M. R., Amiri, A., & Rabbani, O. (2012). Application of quadratic regression model for fenton treatment of municipal landfill leachate. Waste Management, 32, 1895–1902.

    Article  CAS  Google Scholar 

  • Gill, R., Mahmood, A., & Nazir, R. (2013). Biosorption potential and kinetic studies of vegetable waste mixture for the removal of nickel (II). Journal of Material Cycles and Waste Management, 15, 115–121.

    Article  CAS  Google Scholar 

  • Hameed, B. H., Ahmad, A. A., & Aziz, N. (2007). Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chemical Engineering Journal, 133, 195–203.

    Article  CAS  Google Scholar 

  • Hashem, A., Abou-Okeil, A., El-Shafie, A., & El-Sakhawy, M. (2006). Grafting of high cellulose pulp extracted from sunflower stalks for removal of Hg (II) from aqueous solution. Polymer-Plastics Technology and Engineering, 45, 135–141.

    Article  CAS  Google Scholar 

  • Hermosilla, D., Merayo, N., Ordonez, R., & Blanco, A. (2012). Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill. Waste Management, 32, 1236–1243.

    Article  CAS  Google Scholar 

  • Johnson, P. D., Watson, M. A., Brown, J., & Jefcoat, I. A. (2002). Peanut hull pellets as a single use sorbent for the capture of Cu(II) from wastewater. Waste Management, 22, 471–480.

    Article  CAS  Google Scholar 

  • Kobya, M., Demirbas, E., & Akyol, A. (2009). Electrochemical treatment and operating cost analysis of textile wastewater using sacrificial iron electrodes. Water Science and Technology, 60, 2261–2270.

    Article  CAS  Google Scholar 

  • Kunii, D., & Levenspiel, O. (1977). Fluidisation engineering. New York: Robert E. Krieger.

    Google Scholar 

  • Li, H., Zhou, S., Sun, Y., & Lv, J. (2010). Application of response surface methodology to the advanced treatment of biologically stabilized landfill leachate using Fenton’s reagent. Waste Management, 30, 2122–2129.

    Article  CAS  Google Scholar 

  • Liu, Y., Wang, J., Zheng, Y., & Wang, A. (2012). Adsorption of methylene blue by kapok fiber treated by sodium chlorite optimized with response surface methodology. Chemical Engineering Journal, 184, 248–255.

    Article  CAS  Google Scholar 

  • Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2006). Removal of orange-G and methyl violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes and Pigments, 69, 210–223.

    Article  CAS  Google Scholar 

  • Maranon, E., & Sastre, H. (1991). Heavy metal removal in packed beds using apple wastes. Bioresource Technology, 38, 39–43.

    Article  CAS  Google Scholar 

  • Mondal, M. K. (2009). Removal of Pb(II) ions from aqueous solution using activated tea waste: adsorption on a fixed-bed column. Journal of Environmental Management, 90, 3266–3271.

    Article  CAS  Google Scholar 

  • Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: process and product optimization using designed experiments. USA: Wiley.

    Google Scholar 

  • Nakagawaa, K., Nambaa, A., Mukaia, S. R., Tamona, H., Ariyadejwanichb, P., & Tanthapanichakoonb, W. (2004). Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes. Water Research, 38, 1791–1798.

    Article  Google Scholar 

  • Ozdemir, U., Ozbay, B., Veli, S., & Zor, S. (2011). Modeling adsorption of sodium dodecyl benzene sulfonate (SDBS) onto polyaniline (PANI) by using multi linear regression and artificial neural networks. Chemical Engineering Journal, 178, 183–190.

    Article  Google Scholar 

  • Papandreoua, A., Stournarasa, C. J., & Panias, D. (2007). Copper and cadmium adsorption on pellets made from fired coal fly ash. Journal of Hazardous Materials, 148, 538–547.

    Article  Google Scholar 

  • Pengthamkeerati, P., Satapanajaru, T., & Singchan, O. (2008). Sorption of reactive dye from aqueous solution on biomass fly ash. Journal of Hazardous Materials, 153, 1149–1156.

    Article  CAS  Google Scholar 

  • Reddad, Z., Gerente, C., Andres, Y., & Cloirec, P. L. (2002). Adsorption of sevral metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environmental Science & Technology, 36, 2067–2073.

    Article  CAS  Google Scholar 

  • Sahu, J. N., Acharya, J., & Meikap, B. C. (2009). Response surface modeling and optimization of chromium(VI) removal from aqueous solution using tamarind wood activated carbon in batch process. Journal of Hazardous Materials, 172, 818–825.

    Article  CAS  Google Scholar 

  • Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination, 280, 1–13.

    Article  CAS  Google Scholar 

  • Simsek, E. B., Ozdemir, E., & Beker, U. (2013). Process optimization for arsenic adsorption onto natural zeolite incorporating metal oxides by response surface methodology. Water, Air, & Soil Pollution, 224, 1614–1627.

    Article  Google Scholar 

  • Singh, K. P., Gupta, S., Singh, A. K., & Sinha, S. (2010). Experimental design and response surface modeling for optimization of rhodamine b removal from water by magnetic nanocomposite. Chemical Engineering Journal, 165, 151–160.

    Article  CAS  Google Scholar 

  • TEDAS, 2013.http://www.tedas.gov.tr/BilgiBankasi/Sayfalar/ElektrikTarifeleri.aspx Accessed 1 March 2013.

  • Tonini, D., & Astrup, T. (2012). Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste. Waste Management, 32, 165–176.

    Article  CAS  Google Scholar 

  • Vaughan, T., Seo, C. W., & Marshall, W. E. (2001). Removal of selected metal ions from aqueous solution using modified corncobs. Bioresource Technology, 78, 133–139.

    Article  CAS  Google Scholar 

  • Veli, S., & Alyuz, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 149, 226–233.

    Article  CAS  Google Scholar 

  • Wang, L. H., Lin, C. I., & Wu, F. C. (2010). kinetic study of adsorption of copper (II) ion from aqueous solution using rice hull ash. Journal of the Taiwan Institute of Chemical Engineers, 41, 599–605.

    Article  CAS  Google Scholar 

  • Wei, L., Wang, K., Zhao, K., Xie, C., Qiu, W., & Jia, T. (2011). Kinetics and equilibrium of adsorption of dissolved organic matter fractions from secondary effluent by fly ash. Journal of Environmental Sciences, 23, 1057–1065.

    Article  CAS  Google Scholar 

  • Yetilmezsoy, K., Demirel, S., & Vanderbei, R. J. (2009). Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. Journal of Hazardous Materials, 171, 551–562.

    Article  CAS  Google Scholar 

  • Zhang, H., Li, Y., Wu, X., Zhang, Y., & Zhang, D. (2010). Application of response surface methodology to the treatment landfill leachate in a three-dimensional electrochemical reactor. Waste Management, 30, 2096–2102.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by University of Kocaeli Research Fund under project no. 2012/023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Ozbay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gengec, E., Ozdemir, U., Ozbay, B. et al. Optimizing Dye Adsorption Onto a Waste-Derived (Modified Charcoal Ash) Adsorbent Using Box–Behnken and Central Composite Design Procedures. Water Air Soil Pollut 224, 1751 (2013). https://doi.org/10.1007/s11270-013-1751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1751-6

Keywords

Navigation