Skip to main content
Log in

Building upon the Conceptual Model for Soil Mercury Flux: Evidence of a Link Between Moisture Evaporation and Hg Evasion

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Parameters known to influence mercury (Hg) release from soils include substrate and air Hg concentration, light, atmospheric oxidants, temperature, and soil moisture. However, for low Hg-containing soils, the influence of these parameters has been shown to vary across space and time. Here, we expand upon previous work by investigating whether soil–water evaporative loss, which integrates the influence of multiple parameters, could be applied for predicting Hg flux from soil with low Hg concentrations when bare and planted. To investigate our hypothesis, Hg flux was measured from three soil types (<100 ng Hg g−1). When these soils were saturated, flux was suppressed. Soil moisture evaporative stage was used to partition the parameters most important for controlling Hg flux as the soils dried. Classification and regression tree (CART) analyses showed that soil moisture was the most important parameter predicting Hg flux. Results also showed an important predictor for Hg flux was whether actual evaporation (E a) was equal to potential evaporation (E p) or E a < E p. Depending on evaporative stage, the parameters with the next highest correlation to Hg flux were light, temperature, and soil moisture evaporation rate. The presence of vegetation also influenced flux with lower Hg flux when the plants were transpiring. Results indicate for those developing models that estimate Hg flux from low Hg-containing soils, soil moisture and evaporative stage are useful tools for predicting flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Kaisi, M. M., & Broner, I. (2009). Crop water use and growth stages (Resource Document). Fort Collins: Colorado State University.

    Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—Guidelines for computing crop water requirements (FAO Irrigation and Drainage Paper 56, Resource Document). Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Bahlmann, E., Ebinghaus, R., & Ruck, W. (2004). The effect of soil moisture on the emissions of mercury from soils. Materials and Geoenvironment, 51(2), 791–794.

    Google Scholar 

  • Briggs, C. (2011). Hg release from soils amended with flue gas desulfurization solids (Masters thesis). Department of Natural Resources and Environmental Science and Hydrologic Sciences Graduate Program, Reno, NV: Univ. of Nevada, Reno.

  • Briggs, C., Fine, R., Markee, M., & Gustin, M. S. (2012). Investigation of the potential for mercury release from flue Gas desulfurization solids applied as an agricultural amendment. Journal of Environmental Quality. doi:10.2134/jeq2012.0049.

    Google Scholar 

  • Carpi, A., & Lindberg, S. E. (1997). Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge. Environmental Science and Technology, 31(7), 2085–2091.

    Article  CAS  Google Scholar 

  • Carpi, A., Frei, A., Cocris, D., McCloskey, R., Contreras, E., & Ferguson, K. (2007). Analytical artifacts produced by a polycarbonate chamber compared to a Teflon chamber for measuring surface mercury fluxes. Analytical and Bioanalytical Chemistry, 388(2), 361–365.

    Article  CAS  Google Scholar 

  • Coolbaugh, M. F., Gustin, M. S., & Rytuba, J. J. (2002). Annual emissions of mercury to the atmosphere from natural sources in Nevada and California. Environmental Geology, 42(4), 338–349.

    Article  CAS  Google Scholar 

  • Eckley, C. S., Gustin, M., Lin, C. J., Li, X., & Miller, M. B. (2010). The influence of dynamic chamber design and operating parameters on calculated surface-to-air mercury fluxes. Atmospheric Environment, 44(2), 194–203.

    Article  CAS  Google Scholar 

  • Eckley, C. S., Gustin, M., Miller, M. B., & Marsik, F. (2011). Scaling non-point-source mercury emissions from two active industrial gold mines: Influential variables and annual emission estimates. Environmental Science and Technology, 45(2), 392–399.

    Article  CAS  Google Scholar 

  • Ehlers, W., & Goss, M. (2003). Water dynamics in plant production. Wallingford: CABI.

    Book  Google Scholar 

  • Engle, M. A., Gustin, M. S., & Zhang, H. (2001). Quantifying natural source mercury emissions from the Ivanhoe Mining District, North-central Nevada, USA. Atmospheric Environment, 35(23), 3987–3997.

    Article  CAS  Google Scholar 

  • Engle, M. A., Gustin, M. S., Lindberg, S. E., Gertler, A. W., & Ariya, P. A. (2005). The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates. Atmospheric Environment, 39(39), 7506–7517.

    Article  CAS  Google Scholar 

  • Ericksen, J. A., Gustin, M. S., Xin, M., & Fernandez, G. C. J. (2006). Air soil exchange of mercury from background soils in the United States. Science of the Total Environment, 366, 851–863.

    Article  CAS  Google Scholar 

  • Feng, X. B., Wang, S. F., Qiu, G. A., Hou, Y. M., Tang, S. L. (2005). Total gaseous mercury emissions from soil in Guiyang, Guizhou, China. Journal of Geophysical Research, 110, D14306.

  • Fritsche, J., Obrist, D., & Alewell, C. (2008). Evidence of microbial control of Hg-0 emissions from uncontaminated terrestrial soils. Journal of Plant Nutrition and Soil Science, 171(2), 200–209.

    Article  CAS  Google Scholar 

  • Fu, X., Feng, X., Wang, S., Li, Z., & Li, P. (2006). Exchange rate of mercury between atmosphere and different kinds of Earth’s surfaces on the east slope of Mt. Gongga. Chinese Journal of Geochemistry, 25(1), 235.

    Article  Google Scholar 

  • Gillis, A. A., & Miller, D. R. (2000). Some local environmental effects on mercury emission and absorption at a soil surface. Science of the Total Environment, 260(1–3), 191–200.

    Article  CAS  Google Scholar 

  • Gustin, M. S. (2003). Are mercury emissions from geologic sources significant? A status report. Science of the Total Environment, 304(1–3), 153–167.

    Article  CAS  Google Scholar 

  • Gustin, M. S., & Stamenkovic, J. (2005). Effect of watering and soil moisture on mercury emissions from soils. Biogeochemistry, 76(2), 215–232.

    Article  CAS  Google Scholar 

  • Gustin, M. S., Taylor, G. E., & Maxey, R. A. (1997). Effect of temperature and air movement on the flux of elemental mercury from substrate to the atmosphere. Journal of Geophysical Research, 102(D3), 3891–3898.

    Article  CAS  Google Scholar 

  • Gustin, M. S., Biester, H., & Kim, C. S. (2002). Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmospheric Environment, 36(20), 3241–3254.

    Article  CAS  Google Scholar 

  • Hillel, D. (2004). Introduction to environmental soil physics. San Diego: Academic Press.

    Google Scholar 

  • Johnson, D. W., Benesch, J. A., Gustin, M. S., Schorran, D. S., Lindberg, S. E., & Coleman, J. S. (2003). Experimental evidence against diffusion control of Hg evasion from soils. Science of the Total Environment, 304(1–3), 175–184.

    Article  CAS  Google Scholar 

  • Landa, E. R. (1978). Soil–water content and temperature as factors in volatile loss of applied mercury(II) from soils. Journal of Soil Science, 126(1), 44–48.

    Article  CAS  Google Scholar 

  • Landa, E. R. (1979). Volatile loss of mercury from soils amended with methylmercury chloride. Journal of Soil Science, 128(1), 9–16.

    Article  CAS  Google Scholar 

  • Lin, C. J., Gustin, M. S., Singhasuk, P., Eckley, C., & Miller, M. (2010). Empirical models for estimating mercury flux from soils. Environmental Science and Technology, 44(22), 8522–8528.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., Jackson, D. R., Huckabee, J. W., Janzen, S. A., Levin, M. J., & Lund, J. R. (1979). Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine. Journal of Environmental Quality, 8(4), 572–578.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., Zhang, H., Gustin, M., Vette, A., Marsik, F., Owens, J., Casimir, A., Ebinghaus, R., Edwards, G., Fitzgerald, C., Kemp, J., Kock, H. H., London, J., Majewski, M., Poissant, L., Pilote, M., Rasmussen, P., Schaedlich, F., Schneeberger, D., Sommar, J., Turner, R., Wallschlager, D., & Xiao, Z. (1999). Increases in mercury emissions from desert soils in response to rainfall and irrigation. Journal of Geophysical Research, 104(D17), 21879–21888.

    Article  CAS  Google Scholar 

  • Miller, R. W., & Gardiner, D. T. (2007). Soils in our environment (11th ed.). San Diego: Prentice Hall.

    Google Scholar 

  • Penman, K. L. (1963). Vegetation and hydrology. Quarterly Journal of the Royal Meteorological Society, 89(382), 565–566.

    Article  Google Scholar 

  • Poissant, L., & Casimir, A. (1998). Water–air and soil–air exchange rate of total gaseous mercury measured at background sites. Atmospheric Environment, 32(5), 883–893.

    Article  CAS  Google Scholar 

  • Poissant, L., Pilote, M., & Casimir, A. (1999). Mercury flux measurements in a naturally enriched area: Correlation with environmental conditions during the Nevada Study and Tests of the Release of Mercury from Soils (STORMS). Journal of Geophysical Research, 104(D17), 21,845–21,857.

    Article  CAS  Google Scholar 

  • Ritchie, J. T. (1972). Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 8(5), 1204–1213.

    Article  Google Scholar 

  • Song, X., & Van Heyst, B. (2005). Volatilization of mercury from soils in response to simulated precipitation. Atmospheric Environment, 39(39), 7494–7505.

    Article  CAS  Google Scholar 

  • Stamenkovic, J., Gustin, M. S., Arnone, J. A., Johnson, D. W., Larsen, J. D., & Verburg, P. S. (2008). Atmospheric mercury exchange with a tall grass prairie ecosystem housed in mesocosms. Science of the Total Environment, 406(1–2), 227–238.

    Article  CAS  Google Scholar 

  • Wallace, J. S., Jackson, N. A., & Ong, C. K. (1999). Modeling soil evaporation in an agroforestry system in Kenya. Agricultural and Forest Meteorology, 94(3–4), 189–202.

    Article  Google Scholar 

  • Yohannes, Y., & Hoddinott, J. (1999). Classification and regression trees: An introduction. Washington: International Food Policy Research Institute.

    Google Scholar 

  • Zehner, R. E., & Gustin, M. S. (2002). Estimation of mercury vapor flux from natural substrate in Nevada, Environmental Science and Technology 36, 4039–4045.

    Google Scholar 

  • Zhang, H., & Lindberg, S. E. (1999). Processes influencing the emission of mercury from soils: A conceptual model. Journal of Geophysical Research, 104(D17), 21889–21896.

    Article  CAS  Google Scholar 

  • Zhang, H., Lindberg, S. E., Marsik, F. J., & Keeler, G. J. (2001). Mercury air/surface exchange kinetics of background soils of the Tahquamenon River watershed in the Michigan Upper Peninsula. Water Air and Soil Pollution, 126(1–2), 151–169.

    Article  CAS  Google Scholar 

  • Zhang, H., Lindberg, S. E., & Kuiken, T. (2008). Mysterious diel cycles of mercury emission from soils held in the dark at constant temperature. Atmospheric Environment, 42(21), 5424–5433.

    Article  CAS  Google Scholar 

  • Zhao, Y. X., Mann, M. D., Olson, E. S., Pavlish, J. H., & Dunham, G. E. (2006). Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions. Journal of the Air & Waste Management Association, 56(5), 628–635.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was funded by the Electric Power Research Institute with project manager Ken Ladwig. The University of Nevada Reno provided the facilities used in data collection. Thanks to graduate and undergraduate students in the Gustin Research Group who helped with this work specifically Matthieu Miller, Rebekka Fine, Melissa Markee, Claudia Pizarro, Musheng Alishahi, and Vanessa Wehrkamp, and Research Associate Christianna Peterson. Many thanks to Drs. Dale Johnson and Simon Poulson who were members of the first author’s Master’s Thesis Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mae Sexauer Gustin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briggs, C., Gustin, M.S. Building upon the Conceptual Model for Soil Mercury Flux: Evidence of a Link Between Moisture Evaporation and Hg Evasion. Water Air Soil Pollut 224, 1744 (2013). https://doi.org/10.1007/s11270-013-1744-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1744-5

Keywords

Navigation