Skip to main content
Log in

Discoloration of Methyl Orange in the Presence of Schorl and H2O2: Kinetics and Mechanism

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Kinetics and mechanism on discoloration of an azo dye, methyl orange (MO), by heterogeneous Fenton-like reaction using natural schorl as catalyst were investigated in this study. Among the three kinetic models (the first-order, the second-order, and the Behnajady–Modirshahla–Ghanbery (BMG)), the BMG kinetic model was the best one to describe MO discoloration at different reaction conditions, due to its highest determination coefficients. The BMG model parameter, 1/m, increased with initial hydrogen peroxide (H2O2) concentration, and schorl dosage and reaction temperature increased while the pH solution decreased. The phenomenon indicated that the initial MO discoloration rate increased with the ascending of the initial H2O2 concentration, schorl dosage, and reaction temperature and the descending of the pH solution. Meanwhile, another BMG parameter, 1/b, except for the one at pH = 5, were all around 1, implying that the schorl-catalyzed Fenton-like reaction had high capacity for MO discoloration. The possible reason for these phenomena was interpreted from the point of view of OH generation and Fe dissolution. Generally speaking, the amount of hydroxyl radicals increased with initial H2O2 concentration, increased schorl dosage and reaction temperature, and decreased pH solution, playing an important role in the change of 1/m values. The concentration of soluble iron ions at all adopted experimental conditions ranged from 0.23 to 1.14 mg/L, much lower than the European Union directive (2 mg/L), which demonstrated that natural schorl would be a promising heterogeneous catalyst for the Fenton-like reaction. Finally, a possible mechanism for this process was put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amin, A. S., & Gouda, A. A. (2008). Utility of solid-phase spectrophotometry for determination of dissolved iron (II) and iron (III) using 2,3-dichloro-6-(3-carboxy-2-hydroxy-1-naphthylazo) quinoxaline. Talanta, 76, 1241–1245.

    Article  CAS  Google Scholar 

  • Andreozzi, R., Caprio, V., & Marotta, R. (2002). Oxidation of 3,4-dihydroxybenzoic acid by means of hydrogen peroxide in aqueous goethite slurry. Water Research, 36, 2761–2768.

    Article  CAS  Google Scholar 

  • Araujo, F. V. F., Yokoyama, L., Teixeira, L. A. C., & Campos, J. C. (2011). Heterogeneous Fenton process using the mineral hematite for the discolouration of a reactive dye solution. Brazilian Journal Chemical Engineering, 28, 605–616.

    Article  CAS  Google Scholar 

  • Barbusiński, K. (2009). Fenton reaction: controversy concerning the chemistry. Ecological Chemistry and Engineering, 16, 347–358.

    Google Scholar 

  • Bautista, P., Mohedano, A. F., Casas, J. A., Zazo, J. A., & Rodriguez, J. J. (2010). Oxidation of cosmetic wastewaters with H2O2 using a Fe/γ-Al2O3 catalyst. Water Science & Technology, 61, 1631–1636.

    Article  CAS  Google Scholar 

  • Behnajady, M. A., Modirshahla, N., & Ghanbary, F. (2007). A kinetic model for the decolorization of C.I. acid yellow 23 by Fenton process. Journal of Hazardous Materials, 148, 98–102.

    Article  CAS  Google Scholar 

  • Che, H., Bae, S., & Lee, W. (2011). Degradation of trichloroethylene by Fenton reaction in pyrite suspension. Journal of Hazardous Materials, 185, 1355–1361.

    Article  CAS  Google Scholar 

  • Chen, J., & Zhu, L. (2006). Catalytic degradation of orange II by UV-Fenton with hydroxyl-Fe-pillared bentonite in water. Chemosphere, 65, 1249–1255.

    Article  CAS  Google Scholar 

  • Demirhan, N., & Elmali, F. T. (2003). Spectrophotometric determination of iron (II) with 5-nitro-6-amino-1,10-phenanthroline. Turkish Journal of Chemistry, 27, 315–321.

    CAS  Google Scholar 

  • Diez, L., Livertoux, M.-H., Stark, A.-A., Wellman-Rousseau, M., & Leroy, P. (2001). High-performance liquid chromatographic assay of hydroxyl free radical using salicylic acid hydroxylation during in vitro experiments involving thiols. Journal of Chromatography B: Biomedical Sciences and Applications, 763, 185–193.

    Article  CAS  Google Scholar 

  • Dükkancı, M., Gündüz, G., Yılmaz, S., Yaman, Y. C., Prikhod’ko, R. V., & Stolyarova, I. V. (2010). Characterization and catalytic activity of CuFeZSM-5 catalysts for oxidative degradation of Rhodamine 6G in aqueous solutions. Applied Catalysis B: Environmental, 95, 270–278.

    Article  Google Scholar 

  • Feng, H.-P., & Li, Y.-C. (2009). Investigation on reaction kinetics of salicylic acid and hydroxyl radicals. Chinese Journal of Spectroscopy Laboratory, 26(4), 931–938 (in Chinese).

    CAS  Google Scholar 

  • Feng, J., Hu, X., & Yue, P. L. (2004). Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of orange II. Environmental Science and Technology, 38, 269–275.

    Article  CAS  Google Scholar 

  • Granados-Oliveros, G., Gómez-Vidales, V., Nieto-Camacho, A., Morales-Serna, J. A., Cárdenas, J., & Salmón, M. (2013). Photoproduction of H2O2 and hydroxyl radicals catalysed by natural and super acid-modified montmorillonite and its oxidative role in the peroxidation of lipids. RSC Advances, 3, 937–944.

    Article  CAS  Google Scholar 

  • Hartmann, M., Kullmann, S., & Keller, H. (2010). Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. Journal of Materials Chemistry, 20, 9002–9017.

    Article  CAS  Google Scholar 

  • Hassan, H., & Hameed, B. H. (2011). Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of reactive blue 4. Chemical Engineering Journal, 171, 912–918.

    Article  CAS  Google Scholar 

  • He, J., Tao, X., Ma, W., & Zhao, J. (2002). Heterogeneous photo-Fenton degradation of an azo dye in aqueous H2O2/iron oxide dispersions at neutral pHs. Chemistry Letters, 1, 86–87.

    Article  Google Scholar 

  • Herney-Ramirez, J., Lampinen, M., Vicente, M. A., Costa, C. A., & Madeira, L. M. (2008). Experimental design to optimize the oxidation of orange II dye solution using a clay-based Fenton-like catalyst. Industrial & Engineering Chemistry Research, 47, 284–294.

    Article  CAS  Google Scholar 

  • Hu, X. B., Liu, B. Z., Deng, Y. H., Chen, H. Z., Luo, S., Sun, C., et al. (2011). Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution. Applied Catalysis B: Environmental, 107, 274–283.

    Article  CAS  Google Scholar 

  • Huang, C.-P., & Huang, Y.-H. (2008). Comparison of catalytic decomposition of hydrogen peroxide and catalytic degradation of phenol by immobilized iron oxides. Applied Catalysia A: General, 346, 140–148.

    Article  CAS  Google Scholar 

  • Idel-aouad, R., Valiente, M., Yaacoubi, A., Tanouti, B., & López-Mesas, M. (2011). Rapid decolourization and mineralization of the azo dye C.I. Acid Red 14 by heterogeneous Fenton reaction. Journal of Hazardous Materials, 186, 745–750.

    Article  CAS  Google Scholar 

  • Jung, Y. S., Lim, W. T., Park, J.-Y., & Kim, Y.-H. (2009). Effect of pH on Fenton and Fenton-like oxidation. Environmental Technology, 30, 183–190.

    Article  CAS  Google Scholar 

  • Karthikeyan, S., Gupta, V. K., Boopathy, R., Titus, A., & Sekaran, G. (2012). A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. Journal of Molecular Liquids, 173, 153–163.

    Article  CAS  Google Scholar 

  • Kwan, W. P., & Voelker, B. M. (2004). Influence of electrostatics on the oxidation rates of organic compounds in heterogeneous Fenton systems. Environmental Science and Technology, 38, 3425–3431.

    Article  CAS  Google Scholar 

  • Kwan, W. P., & Voelker, B. M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environmental Science and Technology, 37, 1150–1158.

    Article  CAS  Google Scholar 

  • Liu, B., & Wang, H.-X. (2008). Determination of atmospheric hydroxyl radical by HPLC coupled with electrochemical detection. Journal of Environmental Sciences, 20, 28–32.

    Article  CAS  Google Scholar 

  • Lu, M., Wu, X. J., & Wei, X. F. (2012). Chemical degradation of polyacrylamide by advanced oxidation processes. Environmental Technology, 33, 1021–1028.

    Article  CAS  Google Scholar 

  • Lu, M. C., Chen, J. N., & Huang, H. H. (2002). Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide. Chemosphere, 46, 131–136.

    Article  CAS  Google Scholar 

  • Magario, I., García Einschlag, F. S., Rueda, E. H., Zygadlo, J., & Ferreira, M. L. (2012). Mechanisms of radical generation in the removal of phenol derivatives and pigments using different Fe-based catalytic systems. Journal of Molecular Catalysis A: Chemical, 352, 1–20.

    Article  CAS  Google Scholar 

  • Mesquita, I., Matos, L. C., Duarte, F., Maldonado-Hódar, F. J., Mendes, A., & Madeira, L. M. (2012). Treatment of azo dye-containing wastewater by a Fenton-like process in a continuous packed-bed reactor filled with activated carbon. Journal of Hazardous Materials, 237–238, 30–37.

    Article  Google Scholar 

  • Nakamura, T., & Kubo, T. (1992). Tourmaline group crystals reaction with water. Ferroelectrics, 137, 13–31.

    Article  CAS  Google Scholar 

  • Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, B98, 33–50.

    Article  Google Scholar 

  • Nidheesh, P. V., & Gandhimathi, R. (2012). Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination, 299, 1–15.

    Article  CAS  Google Scholar 

  • Niu, H. Y., Zhang, D., Meng, Z. F., & Cai, Y. Q. (2012). Fast defluorination and removal of norfloxacin by alginate/Fe@Fe3O4 core/shell structured nanoparticles. Journal of Hazardous Materials, 227–228, 195–203.

    Article  Google Scholar 

  • Pereira, M. C., Oliveira, L. C. A., & Murad, E. (2012). Iron oxide catalysts: Fenton and Fenton like reactions—a review. Clay Minerals, 47, 285–302.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36, 1–84.

    Article  CAS  Google Scholar 

  • Rusevova, K., Kopinke, F.-D., & Georgi, A. (2012). Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—influence of Fe(II)/Fe(III) ratio on catalytic performance. Journal of Hazardous Materials, 241–242, 433–440.

    Article  Google Scholar 

  • Sánchez-Sánchez, C. M., Expósito, E., Casado, J., & Montiel, V. (2007). Goethite as a more effective iron dosage source for mineralization of organic pollutants by electro-Fenton process. Electrochemistry Communications, 9, 19–24.

    Article  Google Scholar 

  • Tabet, D., Saidi, M., Houari, M., Pichat, P., & Khalaf, H. (2006). Fe-pillared clay as a Fenton-type heterogeneous catalyst for cinnamic acid degradation. Journal of Environmental Management, 80, 342–346.

    Article  CAS  Google Scholar 

  • Tesfaldet, Z. O., Staden, J. F. V., & Stefan, R. I. (2004). Sequential injection spectrophotometric determination of iron as Fe(II) in multi-vitamin preparations using 1,10-phenanthroline as complexing agent. Talanta, 64, 1189–1195.

    Article  CAS  Google Scholar 

  • Tunç, S., Gürkan, T., & Duman, O. (2012). On-line spectrophotometric method for the determination of optimum operation parameters on the decolorization of Acid Red 66 and Direct Blue 71 from aqueous solution by Fenton process. Chemical Engineering Journal, 181–182, 431–442.

    Article  Google Scholar 

  • Wang, J. L., & Xu, L. J. (2012). Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 42, 251–325.

    Article  Google Scholar 

  • Wu, F., Li, J., Peng, Z., & Deng, N. (2008). Photochemical formation of hydroxyl radicals catalyzed by montmorillonite. Chemosphere, 72, 407–413.

    Article  CAS  Google Scholar 

  • Wu, H. H., Dou, X. W., Deng, D. Y., Guan, Y. F., Zhang, L. G., & He, G. P. (2012). Decolourization of the azo dye Orange G in aqueous solution via a heterogeneous Fenton-like reaction catalysed by goethite. Environmental Technology, 33, 1545–1552.

    Article  CAS  Google Scholar 

  • Xu, H.-Y., Prasad, M., & Wang, P. (2010a). Enhanced removal of phenol from aquatic solution in a schorl-catalyzed Fenton-like system by acid-modified schorl. Bulletin of the Korean Chemical Society, 31, 803–808.

    Article  CAS  Google Scholar 

  • Xu, H.-Y., Prasad, M., Qi, S. Y., & Li, Y. (2010b). Role of Schorl’s electrostatic field in discoloration of methyl orange wastewater using schorl as catalyst in the presence of H2O2. Science China-Technological Sciences, 53, 3014–3019.

    Article  CAS  Google Scholar 

  • Xu, H.-Y., Prasad, M., & Liu, Y. (2009a). Schorl: a novel catalyst in mineral-catalyzed Fenton-like system for dyeing wastewater discoloration. Journal of Hazardous Materials, 165, 1186–1192.

    Article  CAS  Google Scholar 

  • Xu, H.-Y., Prasad, M., He, X.-L., Shan, L.-W., & Qi, S.-Y. (2009b). Discoloration of Rhodamine B dyeing wastewater by schorl-catalyzed Fenton-like reaction. Science in China Serials E- Technological Sciences, 52, 3054–3060.

    Article  CAS  Google Scholar 

  • Xu, L. J., & Wang, J. L. (2012). Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environmental Science and Technology, 46, 10145–10153.

    CAS  Google Scholar 

  • Zhang, L. L., Nie, Y. L., Hu, C., & Qu, J. H. (2012). Enhanced Fenton degradation of Rhodamine B over nanoscaled Cu-doped LaTiO3 perovskite. Applied Catalysis B: Environmental, 125, 418–424.

    Article  CAS  Google Scholar 

  • Zhong, X., Barbier, J., Jr., Duprez, D., Zhang, H., & Royer, S. (2012). Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: effect on the activity for the CWPO of phenol reaction. Applied Catalysis B: Environmental, 121–122, 123–134.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Natural Science Foundation of China (no. 51002040), The National College Students’ Innovative Training Project (no. 201210214006)n and The Science Foundation of the Heilongjiang Education Office (no. 12521071). Meanwhile, Prof. Huan-Yan Xu also expressed his appreciation for financial support of Program for New Century Excellent Talents in Heilongjiang Provincial Universities (1253-NCET-010), Reserve Talents of Universities Oversea Research Program of Heilongjiang and Young Outstanding Talents Project of Harbin University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-Yan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, HY., Shi, TN., Wu, LC. et al. Discoloration of Methyl Orange in the Presence of Schorl and H2O2: Kinetics and Mechanism. Water Air Soil Pollut 224, 1740 (2013). https://doi.org/10.1007/s11270-013-1740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1740-9

Keywords

Navigation