Skip to main content
Log in

Nanofiltration of Acid Mine Drainage in an Abandoned Mercury Mining Area

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In Asturias (north of Spain), mercury mining has been identified as a potential source of trace elements such as As, Sb, Pb, and Hg. In particular, at Los Rueldos mine site, some of these contaminants are dissolved in acidic mine drainage (AMD). Here we treated this leachate by means of nanofiltration to remove some of its pollutants. In order to improve our understanding of the geochemical factors involved in nanofiltration, we analyzed sediment geochemistry and the origin of acidic waters. In coherence with the observation of similar behaviors of As, Fe, and Al in the nanofiltration tests, a clear geochemical association between As, Sb, S, and Fe both in sediments and in the occurrence of AMD was detected. The FILMTEC™ NF-2540 membrane used in this study proved to be highly suitable for the treatment and concentration of the metallic and semimetallic contaminants in the acidic water, even at low pH and moderate pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Zoubi, H., Steinberger, P., Pelz, W., Haseneder, R., & Härtel, G. (2010). Optimization study for treatment of acid mine drainage using membrane technology. Separation Science and Technology, 45, 1–13.

    Article  Google Scholar 

  • Applied Membranes, Inc. (2013) FILMTEC™ Membranes. FILMTEC NF270 Nanofiltration Elements for Commercial Systems. http://www.appliedmembranes.com/pdf/FilmTec%20Specs/NF270-2.5%20&%204Inch.pdf. Accessed 4 Sept 2013.

  • Baldo, C., Loredo, J., Ordóñez, A., Gallego, J. R., & García-Iglesias, J. (1999). Geochemical characterization of wastes from a mercury mine in Asturias (northern Spain). Journal of Geochemical Exploration, 67, 377–390.

    Article  Google Scholar 

  • Bigham, J. M., & Nordstrom, D. K. (2000). Iron and aluminum hydroxysulfates from acid sulfate waters. In Sulfate minerals: crystallography, geochemistry, and environmental significance (eds. C.N. Alpers, J.L. Jambor and D.K. Nordstrom). Reviews in Mineralogy and Geochemistry, 40, 351–403.

  • Blodau, C. (2006). A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Science of the Total Environment, 369(1–3), 307–332.

    Article  CAS  Google Scholar 

  • Gaikwad, R. W., Sapkal, V. S., & Sapkal, R. S. (2010). Ion exchange system design for removal of heavy metals from acid mine drainage wastewater. Acta Montanistica Slovaca, 15(4), 298–304.

    CAS  Google Scholar 

  • Gallego, J. R., Ordóñez, A., & Loredo, J. (2002). Investigation of trace element sources from an industrialized area (Avilés, northern Spain) using multivariate statistical methods. Environment International, 27, 589–596.

    Article  CAS  Google Scholar 

  • Harris, M. A., & Ragusas, S. (2001). Biorremediation of acid drainage using decomposable plant material in a constant fow biorreactor. Journal of Environmental Geology, 40(20), 1192–1204.

    CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2003). The microbiology of acidic mine waters. Research in Microbiology, 154, 466–473.

    Article  CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338, 3–14.

    Article  CAS  Google Scholar 

  • Kuyucak, N. (2001). Acid mine drainage—treatment options for mining effluents. Mining Environmental Management, 9, 14–17.

    Google Scholar 

  • Kuyucak, N. (2002). Role of microorganisms in mining: generation of acid rock drainage and its mitigation and treatment. The European Journal of Mineral Processing and Environmental Protection, 2(3), 179–196.

    CAS  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Lonsdale, H. K., Merten, U., & Riley, R. L. (1965). Transport properties of cellulose acetate osmotic membranes. Journal of Applied Polymer Science, 9, 1341.

    Article  CAS  Google Scholar 

  • Loredo, J., Luque, C., & García-Iglesias, J. (1988). Conditions of formation of Hg deposits from the Cantabrian zone (Spain). Bulletin de Mineralogie, 111, 393–400.

    CAS  Google Scholar 

  • Loredo, J., Álvarez, R., & Ordóñez, A. (2005). Release of toxic metals and metalloids form Los Rueldos mercury mine (Asturias, Spain). Science of the Total Environment, 340, 247–260.

    Article  CAS  Google Scholar 

  • Luque, C. (1985). Las mineralizaciones de mercurio de la Cordillera Cantábrica, Ph.D. thesis, University of Oviedo, Spain.

  • Luque, C., García Iglesias, J., & García Coque, P. (1989). Características geoquímicas de los minerales de mercurio de la Cordillera Cantábrica (NW de España). Trabajos de Geologia, 18, 3–11.

    Google Scholar 

  • Mason, D. G., & Gupta, M. K. (1972). Reverse osmosis demineralization of acid mine drainage. Washington, D.C: U.S. Environmental Protection Agency.

    Google Scholar 

  • Matlock, M. M., Howerton, B. S., & Atwood, D. A. (2002). Chemical precipitation of heavy metals from acid mine drainage. Water Research, 36(19), 4757–4764.

    Article  CAS  Google Scholar 

  • Motsi, T., Rowson, N. A., & Simmons, M. J. H. (2011). Kinetic studies of the removal of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 101(1–4), 42–49.

    Article  CAS  Google Scholar 

  • Rautenbach, R., & Gröschl, A. (1990). Separation potential of nanofiltration membranes. Desalination, 77, 73–84.

    CAS  Google Scholar 

  • Sánchez-España, F. J., López Pamo, E., Santofimia, E., Aduvire, O., Reyes, J., & Baretino, D. (2005). Acid mine drainage in the Iberian Pyrite Belt (Odiel River watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Applied Geochemistry, 20, 1320–1356.

    Article  Google Scholar 

  • Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering, 19(2), 105–116.

    Article  CAS  Google Scholar 

  • Sierra, C., Menéndez-Aguado, J. M., Afif, E., Carrero, M., & Gallego, J. R. (2011). Feasibility study on the use of soil washing to remediate the As–Hg contamination at an ancient mining and metallurgy area. Journal of Hazardous Materials, 196, 93–100.

    Article  CAS  Google Scholar 

  • Smith, K. S. (1999). Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. In The environmental geochemistry of mineral deposits, part A: processes, techniques, and health issues: Society of Economic Geologists (eds. G.S. Plumlee and M.J. Losdon), Reviews in Economic Geology, 6A, 161–182.

  • Stevanović, Z., Antonijević, M., Jonović, R., Avramović, L. J., Marković, R., Bugarin, M., et al. (2009). Leach-SX-EW copper revalorization from overburden of abandoned copper mine Cerovo, Eastern Serbia. Journal of Mining and Metallurgy, 45 B(1), 45–57.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (2009). National recommended water quality criteria: U.S. Environmental Protection Agency. Offices of Water and Science and Technology. http://www.epa.gov/ost/criteria/wqctable/. Accessed 4 Sept 2013.

  • Zhong, C. M., Xu, Z. L., Fang, X. H., & Cheng, L. (2007). Treatment of acid mine drainage (AMD) by ultra-low-pressure reverse osmosis and nanofiltration. Environmental Engineering Science, 24(9), 1297–1306.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis R. Gallego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sierra, C., Álvarez Saiz, J.R. & Gallego, J.L.R. Nanofiltration of Acid Mine Drainage in an Abandoned Mercury Mining Area. Water Air Soil Pollut 224, 1734 (2013). https://doi.org/10.1007/s11270-013-1734-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1734-7

Keywords

Navigation