Skip to main content

Advertisement

Log in

Defluoridation of Drinking Water Using PURAL® MG-20 Mixed Hydroxide Adsorbent

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The potential of mixed alumina-magnesia hydroxide adsorbent (PURAL® MG-20) for defluoridation of drinking water using batch and continuous mode of operations has been reported in the present article. Systematic adsorption experiments were carried out to elucidate the effects of different process parameters such as adsorbent dose, initial fluoride concentration, pH of the solution and effect of other ions (usually present in groundwater). These studies were aimed to understand the adsorption behaviour of the PURAL® MG-20 adsorbents. Fluoride adsorption by PURAL® MG-20 sorbent was found pH dependent. Maximum fluoride removal efficiency was observed in the range of pH 5–7. Langmuir isotherm described the data better than Freundlich and Temkin isotherm models and the adsorption capacity was found to be 5.62 mg g−1 at initial fluoride concentration of 5.13 mg L−1, pH 7 and contact time 24 h. The kinetic result shows that the fluoride sorption follows pseudo-second-order kinetics. Column breakthrough studies were performed to test the performance of the adsorbent media at continuous mode of operation. Thus, it can be concluded that PURAL® MG-20 adsorbent can be used directly for field applications since it shows high fluoride uptake capacity under simulated drinking water conditions and it is also commercially available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A T :

Temkin isotherm equilibrium binding constant (in litre per milligram)

B T :

Temkin isotherm constant

C o :

Initial concentration of fluoride (in milligram per litre)

C e :

Equilibrium concentration of fluoride ion (in milligram per litre)

K :

Langmuir isotherm constant

K 1 :

Pseudo-first-order rate constant (in per minute)

K 2 :

Rate constant for second-order adsorption (in gram per milligram minute)

K F :

Freundlich constants

K p :

Intraparticle diffusion rate constant (in milligram per gram square root minute)

m :

Weight of adsorbent used per litre of solution (in gram per litre)

n :

Adsorption intensity

q t :

Amount of adsorbate retained at time t (in milligram per gram)

q e :

Adsorption capacity (in milligram per gram) of the solid at equilibrium

q max :

Maximum sorption capacity corresponding to complete monolayer coverage (in milligram per gram)

V :

Volume of the aqueous solution (L)

W :

Mass of the adsorbent (g)

References

  • Adhikary, S. K., Tipnis, U. K., Harkare, W. P., & Govindan, K. P. (1989). Defluoridation during desalination of brackish water by electrodialysis. Desalination, 71, 301–312.

    Article  CAS  Google Scholar 

  • Arora, M., Maheshwari, R. C., Jain, S. K., & Gupta, A. (2004). Use of membrane technology for portable water production. Desalination, 170, 105–112.

    Article  CAS  Google Scholar 

  • Bhatnagar, A., Kumar, E., & Sillanpää, M. (2011). Fluoride removal from water by adsorption—a review. Chemical Engineering Journal, 171, 811–840.

    Article  CAS  Google Scholar 

  • Diawara, C. K., Lô, S. M., Rumeau, M., Pontie, M., & Sarr, O. (2003). A phenomenological mass transfer approach in nanofiltration of halide ions for a selective defluoridation of brackish drinking water. Journal of Membrane Science, 219, 103–112.

    Article  CAS  Google Scholar 

  • Ghorai, S., & Pant, K. K. (2005). Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Separation and Purification Technology, 42, 265–271.

    Article  CAS  Google Scholar 

  • Goswami, A., & Purkait, M. K. (2012). The defluoridation of water by acidic alumina. Chemical Engineering Research and Design, 90, 2316–2324.

    Article  CAS  Google Scholar 

  • Jagtap, S., Thakre, D., Wanjari, S., Kamble, S., Labhsetwar, N., & Rayalu, S. (2009). New modified chitosan-based adsorbent for defluoridation of water. Journal of Colloid and Interface Science, 332, 280–290.

    Article  CAS  Google Scholar 

  • Kagne, S., Jagtap, S., Dhawade, P., Kamble, S. P., Devotta, S., & Rayalu, S. S. (2008). Hydrated cement: a promising adsorbent for the removal of fluoride from aqueous solution. Journal of Hazardous Materials, 154, 88–95.

    Article  CAS  Google Scholar 

  • Kamble, S. P., Jagtap, S., Labhsetwar, N. K., Thakare, D., Godfrey, S., Devotta, S., & Rayalu, S. S. (2007). Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan. Chemical Engineering Journal, 129, 173–180.

    Article  CAS  Google Scholar 

  • Kamble, S. P., Dixit, P., Rayalu, S. S., & Labhsetwar, N. K. (2009). Defluoridation of drinking water using chemically modified bentonite clay. Desalination, 249, 687–693.

    Article  CAS  Google Scholar 

  • Kamble, S. P., Deshpande, G., Barve, P. P., Rayalu, S., Labhsetwar, N. K., Malyshew, A., & Kulkarni, B. D. (2010). Adsorption of fluoride from aqueous solution by alumina of alkoxide nature: batch and continuous operation. Desalination, 264, 15–23.

    Article  CAS  Google Scholar 

  • Li, Y. H., Wang, S., Cao, A., Zhao, D., Zhang, X., Xu, C., Luan, Z., Ruan, D., Liang, J., Wu, D., & Wei, B. (2001). Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chemical Physics Letters, 350, 412–416.

    Article  CAS  Google Scholar 

  • Lounici, H., Belhocine, D., Grib, H., Drouiche, M., Pauss, A., & Mameri, N. (2004). Fluoride removal with electro-activated alumina. Desalination, 161, 287–293.

    Article  CAS  Google Scholar 

  • Maliyekkal, S. M., Sharma, A. K., & Philip, L. (2006). Manganese-oxide-coated alumina: a promising sorbent for defluoridation. Water Research, 40, 3497–3506.

    Article  CAS  Google Scholar 

  • Mameri, N., Yeddou, A. R., Lounici, H., Belhocine, D., Grib, H., & Bariou, B. (1998). Defluoridation of septentrional Sahara water of North Africa by electrocoagulation process using bipolar aluminium electrodes. Water Research, 32, 1604–1612.

    Article  CAS  Google Scholar 

  • Mehta, P. (2012). Impending water crisis in India and comparing clean water standards among developing and developed nations. Archive of Applied Scientific Research, 4, 497–507.

    Google Scholar 

  • Mjengera, H., & Mkongo, G. (2003). Appropriate defluoridation technology for use in flourotic areas in Tanzania. Physics and Chemistry of the Earth, 28, 1097–1104.

    Article  Google Scholar 

  • Nawlakhe, W. G., Kulkarni, D. N., Pathak, B. N., & Bulusu, K. R. (1975). Defluoridation of water by Nalgonda Technique. Indian Journal of Environmental Health, 17, 26–65.

    CAS  Google Scholar 

  • Pontie, M., Diawara, C. K., & Rumeau, M. (2003a). Streaming effect of single electrolyte mass transfer in nanofiltration: potential application for the selective defluoridation of brackish drinking waters. Desalination, 151, 267–274.

    Article  CAS  Google Scholar 

  • Pontie, M., Buisson, H., Diawara, C. K., & Essis-Tome, H. (2003b). Studies of halide ions mass transfer in nanofiltration—application to selective defluoridation of brackish drinking water. Desalination, 157, 127–134.

    Article  CAS  Google Scholar 

  • Shen, F., Chen, X., Gao, P., & Chen, G. (2003). Electrochemical removal of fluoride ions from industrial wastewater. Chemical Engineering Science, 58, 987–993.

    Article  CAS  Google Scholar 

  • Wang, S.-G., Ma, Y. S., & Yi-Jing, G. W.-X. (2008). Defluoridation performance and mechanism of nano-scale aluminium oxide hydroxide in aqueous solution. Journal of Chemical Technology and Biotechnology, 84(7), 1043–1050.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Sasol Germany, GmbH, Hamburg, Germany for supplying free samples of PURAL® MG-20 sorbent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay P. Kamble.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patankar, G.V., Tambe, A.S., Kulkarni, B.D. et al. Defluoridation of Drinking Water Using PURAL® MG-20 Mixed Hydroxide Adsorbent. Water Air Soil Pollut 224, 1727 (2013). https://doi.org/10.1007/s11270-013-1727-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1727-6

Keywords

Navigation