Skip to main content
Log in

Leaf Packs in Impaired Streams: The Influence of Leaf Type and Environmental Gradients on Breakdown Rate and Invertebrate Assemblage Composition

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The presence of different kinds of leaf packs (native or alien) and environmental gradients can affect the composition and abundance of macroinvertebrate assemblages in freshwater ecosystems, but little is known about the interactive effects. Here, we investigated (1) how environmental gradients could influence leaf packs macroinvertebrates and (2) which was the chief factor (among water quality, mass loss of leaf packs, and flow regime) affecting macroinvertebrate assemblages in impaired streams. We analyzed leaf packs in six sites in impaired streams, characterized by wastewater discharges and dominated by pollution-tolerant macroinvertebrate species. Using principal component analysis, we defined two environmental gradients as follows: a water quality gradient, related to anthropogenic alteration, and a hydromorphological gradient, mostly related to the catchment features. Our results pointed out that, in the tested conditions, biological metrics, such as functional groups and taxa richness, were chiefly influenced by the water quality gradient, while different leaf types in packs influenced the total taxa richness, but did not cause significant variation in the distribution and abundance of macroinvertebrate functional groups. On the contrary, the mass loss differed for different leaf types and was related to the stream and catchment features (mainly flow). This work showed that, in impaired streams, macroinvertebrate assemblages colonizing leaf packs are more influenced by water quality than by leaf types. Thus, the improvement of water quality should be the priority in restoration programs and should be achieved before any effort to restore native riparian vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan, J. D. (1995). Stream ecology: structure and function of running waters. Dordrecht, Netherlands: Kluwer Academic Publishers.

    Book  Google Scholar 

  • APAT, CNR-IRSA (2003). Metodi analitici per le acque - Volume primo. Manuali e Linee Guida 29/2003

  • Campaioli, S., Ghetti, P. F., Minelli, A., & Ruffo, S. (1999). Manuale per il riconoscimento dei macroinvertebrati delle acque dolci italiane. Trento: Provincia autonoma di Trento.

    Google Scholar 

  • Canobbio, S., Mezzanotte, V., Sanfilippo, U., & Benvenuto, F. (2009). Effect of multiple stressors on water quality and macroinvertebrate assemblages in an effluent-dominated stream. Water, Air, and Soil Pollution, 198, 359–371.

    Article  CAS  Google Scholar 

  • Canobbio, S., Mezzanotte, V., Benvenuto, F., & Siotto, M. (2010). Determination of Serio River (Lombardy, Italy) ecosystem dynamics using macroinvertebrate functional traits. Italian Journal of Zoology, 77, 227–240.

    Article  Google Scholar 

  • Canobbio, S., Azzellino, A., Cabrini, R., & Mezzanotte, V. (2013). A multivariate approach to assess habitat integrity in urban streams using benthic macroinvertebrate metrics. Water Science and Technology, 67, 2832–2837.

    Article  CAS  Google Scholar 

  • Carlisle, D. M., & Clements, W. H. (2005). Leaf litter breakdown, microbial respiration, and shredder production in metal-polluted streams. Freshwater Biology, 50(2), 380–390.

    Article  CAS  Google Scholar 

  • Chang, H. (2005). Spatial and temporal variation in the water quality in the Han River and its tributaries. Water, Air, and Soil Pollution, 161, 267–284.

    Article  CAS  Google Scholar 

  • Coimbra, C. N., Graça, M. A. S., & Cortes, R. M. (1996). The effects of a basic effluent on macroinvertebrate community structure in a temporary Mediterranean river. Environmental Pollution, 94(3), 301–307.

    Article  CAS  Google Scholar 

  • Cummins, K. W. (1986). Stream protection: the management of rivers for instream uses. Australia: Campell.

    Google Scholar 

  • Cummins, K. W., & Klug, M. J. (1979). Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics, 10, 147–172.

    Article  Google Scholar 

  • Cummins, K. W., Petersen, R. C., Howard, F. O., Wuycheck, J. C., & Holt, V. I. (1973). The utilization of leaf litter by stream detritivores. Ecology, 54(2), 336–345.

    Article  Google Scholar 

  • Cummins, K. W., Wilzbach, M. A., Gates, D. M., Perry, J. B., & Taliaferro, W. B. (1989). Shredders and riparian vegetation: leaf litter that falls into stream influences communities of stream invertebrates. Bioscience, 39(1), 24–30.

    Article  Google Scholar 

  • Daniel, M. H. B., Montebelo, A. A., Bernardes, M. C., Ometto, J. P. H. B., de Camargo, P. B., Krusche, A. V., et al. (2002). Effects of urban sewage on dissolved oxygen, dissolved inorganic and organic carbon, and electrical conductivity of small streams along a gradient of urbanization in the Piracicaba River basin. Water, Air, and Soil Pollution, 136, 189–206.

    Article  CAS  Google Scholar 

  • Davies, J. N., & Boulton, A. J. (2009). Great house, poor food: effects of exotic leaf litter on shredder densities and caddisfly growth in six subtropical Australian streams. Journal of North American Benthological Society, 28(2), 491–503.

    Article  Google Scholar 

  • Davies, P. J., Wright, I. A., Findlay, S. J., Jonasson, O. J., & Burgin, S. (2010). Impact of urban development on aquatic macroinvertebrates in south eastern Australia: degradation of in-stream habitats and comparison with non-urban streams. Aquatic Ecology, 44(4), 685–700.

    Article  Google Scholar 

  • Doledec, S., Lamouroux, N., Fuchs, U., & Merigoux, S. (2007). Modeling the hydraulic preferences of benthic macroinvertebrates in small European streams. Freshwater Biology, 52(1), 145–164.

    Article  Google Scholar 

  • Dyer, S. D., Peng, C., McAvoy, D. C., Fendinger, N. J., Masscheleyn, P., Castillo, L. V., et al. (2003). The influence of untreated wastewater to aquatic communities in the Balatuin River, The Philippines. Chemosphere, 52(1), 43–53.

    Article  CAS  Google Scholar 

  • Egglishaw, H. J. (1964). The distributional relationship between the bottom fauna and plant detritus in stream. Journal of Animal Ecology, 33(3), 463–476.

    Article  Google Scholar 

  • Garcia, L., Richardson, J. S., & Pardo, I. (2012). Leaf quality influences invertebrate colonization and drift in a temperate rainforest stream. Canadian Journal of Fisheries and Aquatic Sciences, 69(10), 1663–1673.

    Article  Google Scholar 

  • Gotelli, N. J., & Ellison, A. M. (2004). A primer of ecological statistics, Sinauer Associates. Massachussetts, USA: Inc. Publishers.

    Google Scholar 

  • Graca, M. A. S. (2001). The role of invertebrates on leaf litter decomposition in streams—a review. International Review of Hydrobiology, 86(4), 383–393.

    Article  Google Scholar 

  • Gücker, B., Brauns, M., & Pusch, M. T. (2006). Effects of wastewater treatment plant discharge on ecosystem structure and function of lowland streams. Journal of North American Benthological Society, 25(2), 313–329.

    Article  Google Scholar 

  • Gulis, V., & Suberkropp, K. (2003). Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability. Aquatic Microbial Ecology, 30, 149–157.

    Article  Google Scholar 

  • Irons, J. G., Oswood, M. W., & Bryant, J. P. (1988). Consumption of leaf detritus by a stream shredder: influence of tree species and nutrient status. Hydrobiologia, 160(1), 53–61.

    Article  CAS  Google Scholar 

  • Johnson, R. K., Hering, D., Furse, M. T., & Verdonschot, P. F. M. (2006). Indicators of ecological change: comparison of the early response of four organism groups to stress gradients. Hydrobiologia, 566(1), 139–152.

    Article  CAS  Google Scholar 

  • Kominoski, J. S., & Pringle, C. M. (2009). Resource–consumer diversity: testing the effects of leaf litter species diversity on stream macroinvertebrate communities. Freshwater Biology, 54(7), 1461–1473.

    Article  Google Scholar 

  • Lacan, I., Resh, V. H., & McBride, J. R. (2010). Similar breakdown rates and benthic macroinvertebrate assemblages on native and Eucalyptus globulus leaf litter in Californian streams. Freshwater Biology, 55(4), 739–752.

    Article  CAS  Google Scholar 

  • Mackay, R. J., & Kalff, J. (1969). Seasonal variation in standing crop and species diversity of insect communities in a small Quebec stream. Ecology, 50, 231–249.

    Article  Google Scholar 

  • Marmonier, P., Fontvielle, D., Gibert, J., & Vanek, V. (1995). Distribution of dissolved organic carbon and bacteria at the interface between the Rhone River and its alluvial aquifer. Journal of North American Benthological Society, 14(3), 382–392.

    Article  Google Scholar 

  • Menendez, M., Descals, E., Riera, T., & Moya, O. (2012). Effect of small reservoirs on leaf litter decomposition in Mediterranean headwater streams. Hydrobiologia, 691(1), 135–146.

    Article  Google Scholar 

  • Mèrigoux, S., & Doledec, S. (2004). Hydraulic requirements of stream communities: a case study on invertebrates. Freshwater Biology, 49(5), 600–613.

    Article  Google Scholar 

  • Merritt, R. W., & Cummins, K. W. (1996). An introduction to Aquatic Insect of North America (3rd ed.). Iowa: Kendall-Hunt.

    Google Scholar 

  • Mladenov, N., Strzepek, K., & Serumola, O. M. (2005). Water quality assessment and modeling of an effluent-dominated stream, the Notwane River, Botswana. Environmental Monitoring and Assessment, 109(3), 97–121.

    Article  CAS  Google Scholar 

  • Murphy, J., Giller, P. S., & Horan, M. A. (1998). Spatial scale and the aggregation of stream macroinvertebrates associated with leaf packs. Freshwater Biology, 39, 325–339.

    Article  Google Scholar 

  • Nelson, S. M., & Lieberman, D. M. (2002). The influence of flow and other environmental factors on benthic invertebrates in the Sacramento River, USA. Hydrobiologia, 489(3), 117–129.

    Article  Google Scholar 

  • Ormerod, S. J., Rundle, S. D., Lloyd, E. C., & Douglas, A. A. (1993). The influence of riparian management on the habitat structure and macroinvertebrate communities of upland streams draining plantation forests. Journal of Applied Ecology, 30(1), 13–24.

    Article  Google Scholar 

  • Power, M. E., & Dietrich, W. E. (2002). Food webs in river networks. Ecological Research, 17, 451–471.

    Article  Google Scholar 

  • Prenda, J., & Gallardo-Mayenco, A. (1996). Self-purification, temporal variability, and the macroinvertebrate community in small lowland Mediterranean streams receiving crude domestic sewage effluents. Archiv für Hydrobiologie, 136(2), 159–170.

    CAS  Google Scholar 

  • Rawer-Jost, C., Böhmer, J., Blank, J., & Rahmann, J. (2000). Macroinvertebrate functional feeding group methods in ecological assessment. Hydrobiologia, 422, 225–232.

    Article  Google Scholar 

  • Richardson, J. S. (1992). Food, microhabitat, or both? Macroinvertebrate use of leaf accumulations in a mountain stream. Freshwater Biology, 27(2), 169–176.

    Article  Google Scholar 

  • Sansoni, G. (1992). Atlante per il riconoscimento dei macroinvertebrati dei corsi d’acqua italiani. Trento: Provincia Autonoma di Trento.

    Google Scholar 

  • Schulze, D. J., & Walker, K. F. (1997). Riparian eucalypts and willows and their significance for aquatic invertebrates in the River Murray, South Australia. Regulated Rivers: Research & Management, 13, 557–577.

    Article  Google Scholar 

  • Short, R. A., & Maslin, P. E. (1977). Processing of leaf litter by a stream detritivore: effect on nutrient availability to collectors. Ecology, 58, 935–938.

    Article  Google Scholar 

  • Spänhoff, B., Bischof, R., Böhme, A., Lorenz, S., Neumeister, K., Nöthlich, A., et al. (2007). Assessing the impact of effluents from a modern wastewater treatment plant on breakdown of coarse particulate organic matter and benthic macroinvertebrates in a lowland river. Water, Air, and Soil Pollution, 180, 119–129.

    Article  Google Scholar 

  • Suga, C. M., & Tanaka, M. O. (2012). Influence of a forest remnant on macroinvertebrate communities in a degraded tropical stream. Hydrobiologia, 703, 203–213.

    Article  Google Scholar 

  • Tachet, H., Rochoux, P., Bournaud, M., & Usseglio-Polatera, P. (2000). Invértébres d’ea douce. Paris: CNRS Editions.

    Google Scholar 

  • Tillman, D. C., Moerke, A. H., Ziehl, C. L., & Lamberti, G. A. (2003). Subsurface hydrology and degree of burial affect mass loss and invertebrate colonization of leaves in a woodland stream. Freshwater Biology, 48, 98–107.

    Article  CAS  Google Scholar 

  • Vervier, P., & Naiman, R. J. (1992). Spatial and temporal fluctuations of dissolved organic carbon in subsurface flow of the Stillaguamish River (Washington, USA). Archiv für Hydrobiologie, 123(4), 401–412.

    CAS  Google Scholar 

  • Wagner, R., Schmidt, H. H., & Marxsen, J. (1993). The hyporheic habitat of the Breitenbach, spatial structure and physicochemical conditions as a basis for benthic life. Limnologica, 23(4), 285–294.

    CAS  Google Scholar 

  • Wallace, J. B., Eggert, S. L., Meyer, J. L., & Webster, J. R. (1997). Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science, 277, 102–104.

    Article  CAS  Google Scholar 

  • Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M., & Morgan, R. M. (2005). The urban stream syndrome: current knowledge and the search for a cure. Journal of North American Benthological Society, 24(3), 706–723.

    Google Scholar 

  • Webster, J. R., & Benfield, E. F. (1986). Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics, 17, 67–94.

    Article  Google Scholar 

  • Wills, T. C., Baker, E. A., Nuhfer, A. J., & Zorn, T. G. (2006). Response of the benthic macroinvertebrate community in a Northern Michigan stream to reduced summer streamflows. River Research and Application, 22, 819–836.

    Article  Google Scholar 

  • Wohl, D. L., & McArthur, J. V. (2011). Aquatic actinomycete–fungal interactions and their effects on organic matter decomposition: a microcosm study. Microbial Ecology, 42(3), 446–457.

    Article  Google Scholar 

  • Wright, I. A., Chessman, B. C., Fairweather, P. G., & Benson, J. L. (1995). Measuring the impact of sewage effluent on the macroinvertebrate community of an upland stream: the effect of different levels of taxonomic resolution and quantification. Australian Journal of Ecology, 20(1), 142–149.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to ARPA Lombardia, IREALP Foundation (now a branch of ERSAF Lombardia) and Regione Lombardia (Direzione Generale Ambiente, Energia e Reti) for funding and supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Cabrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabrini, R., Canobbio, S., Sartori, L. et al. Leaf Packs in Impaired Streams: The Influence of Leaf Type and Environmental Gradients on Breakdown Rate and Invertebrate Assemblage Composition. Water Air Soil Pollut 224, 1697 (2013). https://doi.org/10.1007/s11270-013-1697-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1697-8

Keywords

Navigation