Water, Air, & Soil Pollution

, 225:1694 | Cite as

Mercury and Methylmercury Dynamics in the Hyporheic Zone of an Oregon Stream

  • Stephen R. Hinkle
  • Kenneth E. Bencala
  • Dennis A. Wentz
  • David P. Krabbenhoft


The role of the hyporheic zone in mercury (Hg) cycling has received limited attention despite the biogeochemically active nature of this zone and, thus, its potential to influence Hg behavior in streams. An assessment of Hg geochemistry in the hyporheic zone of a coarse-grained island in the Coast Fork Willamette River in Oregon, USA, illustrates the spatially dynamic nature of this region of the stream channel for Hg mobilization and attenuation. Hyporheic flow through the island was evident from the water-table geometry and supported by hyporheic-zone chemistry distinct from that of the bounding groundwater system. Redox-indicator species changed abruptly along a transect through the hyporheic zone, indicating a biogeochemically reactive stream/hyporheic-zone continuum. Dissolved organic carbon (DOC), total Hg, and methylmercury (MeHg) concentrations increased in the upgradient portion of the hyporheic zone and decreased in the downgradient region. Total Hg (collected in 2002 and 2003) and MeHg (collected in 2003) were correlated with DOC in hyporheic-zone samples: r2 = 0.63 (total Hg-DOC, 2002), 0.73 (total Hg-DOC, 2003), and 0.94 (MeHg-DOC, 2003). Weaker Hg/DOC association in late summer 2002 than in early summer 2003 may reflect seasonal differences in DOC reactivity. Observed correlations between DOC and both total Hg and MeHg reflect the importance of DOC for Hg mobilization, transport, and fate in this hyporheic zone. Correlations with DOC provide a framework for conceptualizing and quantifying Hg and MeHg dynamics in this region of the stream channel, and provide a refined conceptual model of the role hyporheic zones may play in aquatic ecosystems.


Mercury Methylmercury Hyporheic zone Groundwater/surface water interactions Oregon Willamette River 


  1. Ambers, R. K. R., & Hygelund, B. N. (2001). Contamination of two Oregon reservoirs by cinnabar mining and mercury amalgamation. Environmental Geology, 40, 699–707.CrossRefGoogle Scholar
  2. Arrigoni, A. S., Poole, G. C., Mertes, L. A. K., O’Daniel, S. J., Woessner, W. W., & Thomas, S. A. (2008). Buffered, lagged, or cooled? Disentangling hyporheic influences on temperature cycles in stream channels. Water Resources Research, 44, W09418. doi:10.1029/2007WR006480.CrossRefGoogle Scholar
  3. Babiarz, C. L., Hurley, J. P., Hoffmann, S. R., Andren, A. W., Shafer, M. M., & Armstrong, D. E. (2001). Partitioning of total mercury and methylmercury to the colloidal phase in freshwaters. Environmental Science and Technology, 35, 4773–4782.CrossRefGoogle Scholar
  4. Barringer, J. L., Riskin, M. L., Szabo, Z., Reilly, P. A., Rosman, R., Bonin, J. L., Fischer, J. M., & Heckathorn, H. A. (2010). Mercury and methylmercury dynamics in a coastal plain watershed, New Jersey, USA. Water, Air, & Soil Pollution, 212, 251–273.CrossRefGoogle Scholar
  5. Battin, T. J. (1999). Hydrologic flow paths control dissolved organic carbon fluxes and metabolism in an alpine stream hyporheic zone. Water Resources Research, 35, 3159–3169.CrossRefGoogle Scholar
  6. Bencala, K. E. (1993). A perspective on stream-catchment connections. Journal of the North American Benthological Society, 12, 44–47.CrossRefGoogle Scholar
  7. Bencala, K. E., Gooseff, M. N., & Kimball, B. A. (2011). Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections. Water Resources Research, W00H03, doi:10.1029/2010WR010066.
  8. Benoit, J. M., Gilmour, C. C., Heyes, A., Mason, R. P., & Miller, C. L. (2003). Geochemcial and biological controls over methylmercury production and degradation in aquatic ecosystems. In Y. Chai & O. C. Braids (Eds.), Biogeochemistry of environmentally important trace elements (pp. 262–287). Washington, DC: American Chemical Society. ACS Symposium Series, v. 835.Google Scholar
  9. Brenton R. W., & Arnett T. L. (1993). Methods of analysis by the US Geological Survey National Water Quality Laboratory—determination of dissolved organic carbon by UV-promoted persulfate oxidation and infrared spectrometry. U.S. Geological Survey Open-File Report 92–480.Google Scholar
  10. Bricker, O. P., & Garrels, R. M. (1967). Mineralogic factors in natural water equilibria. In S. D. Faust & J. V. Hunter (Eds.), Principles and applications of water chemistry (pp. 449–468). New York: Wiley.Google Scholar
  11. Brigham M. E., Duris J. W., Wentz D. A., Button D. T., & Chasar L. C. (2008). Total mercury, methylmercury, and ancillary water-quality and streamflow data for selected streams in Oregon, Wisconsin, and Florida, 2002–06. U.S. Geological Survey Data Series 341.Google Scholar
  12. Brigham, M. E., Wentz, D. A., Aiken, G. R., & Krabbenhoft, D. P. (2009). Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environmental Science and Technology, 43, 2720–2725.CrossRefGoogle Scholar
  13. Canuel, E. A., & Martens, C. S. (1996). Reactivity of recently deposited organic matter: degradation of lipid compounds near the sediment–water interface. Geochimica et Cosmochimica Acta, 60, 1793–1806.CrossRefGoogle Scholar
  14. Chadwick, S. P., Babiarz, C. L., Hurley, J. P., & Armstrong, D. E. (2006). Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury. Science of the Total Environment, 368, 177–188.CrossRefGoogle Scholar
  15. Chapelle, F. H., Bradley, P. M., Goode, D. J., Tiedeman, C., Lacombe, P. J., Kaiser, K., & Benner, R. (2009). Biochemical indicators for the bioavailability of organic carbon in ground water. Ground Water, 47, 108–121.CrossRefGoogle Scholar
  16. Choi, J., Harvey, J. W., & Conklin, M. H. (2000). Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams. Water Resources Research, 36, 1511–1518.CrossRefGoogle Scholar
  17. Conlon T. D., Wozniak K. C., Woodcock D., Herrera N.B ., Fisher B. J., Morgan D. S., Lee K. K., & Hinkle S. R. (2005). Ground-water hydrology of the Willamette Basin, Oregon. U.S. Geological Survey Scientific Investigations Report 2005–5168.Google Scholar
  18. Creswell, J. E., Kerr, S. C., Meyer, M. H., Babiarz, C. L., Shafer, M. M., Armstrong, D. E., & Roden, E. E. (2008). Factors controlling temporal and spatial distribution of total mercury and methylmercury in hyporheic sediments of the Allequash Creek wetland, northern Wisconsin. Journal of Geophysical Research, G00C02, doi:10.1029/2008JG000742.
  19. DeWild J. F., Olsen M. L., & Olund S. D. (2002). Determination of methylmercury by aqueous phase ethylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection. U.S. Geological Survey Open-File Report 2001–445.Google Scholar
  20. Dittman, J. A., Shanley, J. B., Driscoll, C. T., Aiken, G. R., Chalmers, A. T., & Towse, J. E. (2009). Ultraviolet absorbance as a proxy for total dissolved mercury in streams. Environmental Pollution, 157, 1953–1956.CrossRefGoogle Scholar
  21. Domagalski, J. (2001). Mercury and methylmercury in water and sediment of the Sacramento River Basin, California. Applied Geochemistry, 16, 1677–1691.CrossRefGoogle Scholar
  22. Edwards, R. T. (1998). The hyporheic zone. In R. J. Naiman & R. E. Bilby (Eds.), River ecology and management (pp. 399–429). New York: Springer.CrossRefGoogle Scholar
  23. Findlay, S. E. G., Sinsabaugh, R. L., Sobczak, W. V., & Hoostal, M. (2003). Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnology and Oceanography, 48, 1608–1617.CrossRefGoogle Scholar
  24. Fishman M. J., & Friedman L. C. (1989). Methods for determination of inorganic substances in water and fluvial sediments. U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A1.Google Scholar
  25. Fitzgerald, W. F., & Lamborg, C. H. (2003). Geochemistry of mercury in the environment. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (Vol. 9, pp. 107–148). Oxford: Pergamon.Google Scholar
  26. Flanders, J. R., Turner, R. R., Morrison, T., Jensen, R., Pizzuto, J., Skalak, K., & Stahl, R. (2010). Distribution, behavior, and transport of inorganic and methylmercury in a high gradient stream. Applied Geochemistry, 25, 1756–1769.CrossRefGoogle Scholar
  27. Frank F. J. (1973). Ground water in the Eugene-Springfield area, southern Willamette Valley, Oregon. U.S. Geological Survey Water-Supply Paper 2018Google Scholar
  28. Fuller, C. C., & Harvey, J. W. (2000). Reactive uptake of trace metals in the hyporheic zone of a mining-contaminated stream, Pinal Creek, Arizona. Environmental Science and Technology, 34, 1150–1155.CrossRefGoogle Scholar
  29. Garrels, R. M., & Mackenzie, F. T. (1967). Origin of the chemical compositions of some springs and lakes. In W. Stumm (Ed.), Equilibrium concepts in natural water systems (pp. 222–242). Washington, D.C.: American Chemical Society.CrossRefGoogle Scholar
  30. Grant, S. B., & Marusic, I. (2011). Crossing turbulent boundaries: interfacial flux in environmental flows. Environmental Science and Technology, 45, 7107–7113.CrossRefGoogle Scholar
  31. Greig, S. M., Sear, D. A., & Carling, P. A. (2007). A review of factors influencing the availability of dissolved oxygen to incubating salmonid embryos. Hydrological Processes, 21, 323–334.CrossRefGoogle Scholar
  32. Guy H. P., & Norman V. W. (1970). Field methods for measurement of fluvial sediment. U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. C2.Google Scholar
  33. Hall, B. D., Aiken, G. R., Krabbenhoft, D. P., Marvin-DiPasquale, M., & Swarzenski, C. M. (2008). Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region. Environmental Pollution, 154, 124–134.CrossRefGoogle Scholar
  34. Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments—reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.CrossRefGoogle Scholar
  35. Henny, C. J., Kaiser, J. L., Packard, H. A., Grove, R. A., & Taft, M. R. (2005). Assessing mercury exposure and effects to American dippers in headwater streams near mining sites. Ecotoxicology, 14, 709–725.CrossRefGoogle Scholar
  36. Hester, E. T., & Gooseff, M. N. (2010). Moving beyond the banks: Hyporheic restoration is fundamental to restoring ecological services and functions of streams. Environmental Science and Technology, 44, 1521–1525.CrossRefGoogle Scholar
  37. Hill, A. R., Labadia, C. F., & Sanmugadas, K. (1998). Hyporheic zone hydrology and nitrogen dynamics in relation to the streambed topography of a N-rich stream. Biogeochemistry, 42, 285–310.CrossRefGoogle Scholar
  38. Hinkle, S. R., Duff, J. H., Triska, F. J., Laenen, A., Gates, E. B., Bencala, K. E., Wentz, D. A., & Silva, S. R. (2001). Linking hyporheic flow and nitrogen cycling near the Willamette River—a large river in Oregon, USA. Journal of Hydrology, 244, 157–180.CrossRefGoogle Scholar
  39. Hope, B. K. (2006). An assessment of anthropogenic source impacts on mercury cycling in the Willamette Basin, Oregon, USA. The Science of the Total Environment, 356, 165–191.CrossRefGoogle Scholar
  40. Krabbenhoft, D. P., & Babiarz, C. L. (1992). The role of groundwater transport in aquatic mercury cycling. Water Resources Research, 28, 3119–3128.CrossRefGoogle Scholar
  41. Krabbenhoft, D. P., Benoit, J. M., Babiarz, C. L., Hurley, J. P., & Andren, A. W. (1995). Mercury cycling in the Allequash Creek Watershed, northern Wisconsin. Water, Air, & Soil Pollution, 80, 425–433.CrossRefGoogle Scholar
  42. Lutz M. A., Brigham M. E., & Marvin-DiPasquale M. (2008). Procedures for collecting and processing streambed sediment and pore water for analysis of mercury as part of the National Water-Quality Assessment Program. U.S. Geological Survey Open-File Report 2008–1279.Google Scholar
  43. Marvin-DiPasquale, M., Lutz, M. A., Brigham, M. E., Krabbenhoft, D. P., Aiken, G. R., Orem, W. H., & Hall, B. D. (2009). Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment—pore water partitioning. Environmental Science and Technology, 43, 2726–2732.CrossRefGoogle Scholar
  44. McMahon, P. B., & Chapelle, F. H. (2008). Redox processes and water quality of selected principal aquifer systems. Ground Water, 46, 259–271.CrossRefGoogle Scholar
  45. Meyer, M. (2004). Role of the hyporheic zone in methylmercury production and transport to Allequash Creek. Materials and Geoenvironment, 51, 1213.Google Scholar
  46. Moldovan, O. T., Meleg, I. N., Levei, E., & Terente, M. (2013). A simple method for assessing biotic indicators and predicting biodiversity in the hyporheic zone of a river polluted with metals. Ecological Indicators, 24, 412–420.CrossRefGoogle Scholar
  47. Morel, F. M. M., Kraepiel, A. M. L., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29, 543–566.CrossRefGoogle Scholar
  48. National Climatic Data Center. (2012). Summary of the day data lister. National Climatic Data Center. http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?or1902. Accessed 4 Oct 2012.
  49. O’Donnell, J. A., Aiken, G. R., Kane, E. S., & Jones, J. B. (2010). Source water controls on the character and origin of dissolved organic matter in streams of the Yukon River basin, Alaska. Journal of Geophysical Research, 115, G03025. doi:10.1029/2009JG001153.Google Scholar
  50. Palumbo-Roe, B., Wragg, J., & Banks, V. J. (2012). Lead mobilisation in the hyporheic zone and river bank sediments of a contaminated stream: contribution to diffuse pollution. Journal of Soils and Sediments, 12, 1633–1640.CrossRefGoogle Scholar
  51. Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter—a review. Chemosphere, 55, 319–331.CrossRefGoogle Scholar
  52. Schelker, J., Burns, D. A., Weiler, M., & Laudon, H. (2011). Hydrological mobilization of mercury and dissolved organic carbon in a snow–dominated, forested watershed: conceptualization and modeling. Journal of Geophysical Research, 116, G01002. doi:10.1029/2010JG001330.CrossRefGoogle Scholar
  53. Shanley, J. B., Mast, M. A., Campbell, D. H., Aiken, G. R., Krabbenhoft, D. P., Hunt, R. J., Walker, J. F., Schuster, P. F., Chalmers, A., Aulenbach, B. T., Peters, N. E., Marvin-DiPasquale, M., Clow, D. W., & Shafer, M. M. (2008). Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach. Environmental Pollution, 154, 143–154.CrossRefGoogle Scholar
  54. Sobczak, W. V., & Findlay, S. (2002). Variation in bioavailability of dissolved organic carbon among stream hyporheic flowpaths. Ecology, 83, 3194–3209.CrossRefGoogle Scholar
  55. Stoor, R. W., Hurley, J. P., Babiarz, C. L., & Armstrong, D. E. (2006). Subsurface sources of methyl mercury to Lake Superior from a wetland-forested watershed. The Science of the Total Environment, 368, 99–110.CrossRefGoogle Scholar
  56. Trimmer, M., Grey, J., Heppell, C. M., Hildrew, A. G., Lansdown, K., Stahl, H., & Yvon-Durocher, G. (2012). River bed carbon and nitrogen cycling: state of play and some new directions. The Science of the Total Environment, 434, 143–158.CrossRefGoogle Scholar
  57. Triska, F. J., Duff, J. H., & Avanzino, R. J. (1990). Influence of exchange flow between the channel and hyporheic zone on nitrate production in a small mountain stream. Canadian Journal of Fisheries and Aquatic Sciences, 47, 2099–2111.CrossRefGoogle Scholar
  58. United Nations Environment Programme. (2008). The global atmospheric mercury assessment: sources, emissions and transport. Geneva: United Nations Environment Programme Chemicals Branch.Google Scholar
  59. US Environmental Protection Agency. (1997). Mercury study report to Congress, volume I: Executive summary. U.S. Environmental Protection Agency report EPA-452/R-97-003.Google Scholar
  60. US Environmental Protection Agency. (2011). 2010 biennial national listing of fish advisories. U.S. Environmental Protection Agency report EPA-820-F-11-009.Google Scholar
  61. US Geological Survey. (1999). National field manual for the collection of water-quality data. U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A1–A9.Google Scholar
  62. Wentz D. A., Bonn B. A., Carpenter K. D., Hinkle S. R., Janet M. L., Rinella F. A., Uhrich M. A., Waite I. R., Laenen A., & Bencala K. E. (1998). Water quality in the Willamette Basin, Oregon, 1991–1995. U.S. Geological Survey Circular 1161.Google Scholar
  63. Wiener, J. G., Krabbenhoft, D. P., Heinz, G. H., & Scheuhammer, A. M. (2003). Ecotoxicology of mercury, Chapter 16. In D. J. Hoffman, B. A. Rattner, G. A. Burton Jr., & J. Cairns Jr. (Eds.), Handbook of ecotoxicology (2nd ed., pp. 409–463). Boca Raton: CRC Press.Google Scholar
  64. Williams, D. D., Febria, C. M., & Wong, J. C. Y. (2010). Ecotonal and other properties of the hyporheic zone. Fundamental & Applied Limnology, 176, 349–364.CrossRefGoogle Scholar
  65. Zarnetske, J. P., Haggerty, R., Wondzell, S. M., & Baker, M. A. (2011). Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. Journal of Geophysical Research, 116, G01025. doi:10.1029/2010JG001356.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2013

Authors and Affiliations

  • Stephen R. Hinkle
    • 1
  • Kenneth E. Bencala
    • 2
  • Dennis A. Wentz
    • 1
  • David P. Krabbenhoft
    • 3
  1. 1.U.S. Geological SurveyPortlandUSA
  2. 2.U.S. Geological SurveyMenlo ParkUSA
  3. 3.U.S. Geological SurveyMiddletonUSA

Personalised recommendations