Water, Air, & Soil Pollution

, 224:1674 | Cite as

Analysis of NO, NO2, and O3 Between Model Simulations and Ground-Based, Aircraft, and Satellite Observations



Regional air quality model simulations with Community Multiscale Air Quality Modeling System (CMAQ) were evaluated using multiple platforms for a 2-month summer period. In this context, inter-comparisons of the model with available satellite-based observations of NO2, ground- and aircraft-based observations of NO, NO2, NOx, NOy, and O3 were performed. NO2 comparisons found low biases in CMAQ results when using both ground- and satellite-based observations. Aircraft-based observations, on the other hand, indicated a higher positive bias and error, but the overall NO2 vertical profile was captured well by the model. The highest correlation was observed with satellite-based NO2 observations indicating that the model and satellite found similar spatial gradients. NO concentrations were underestimated in comparison with both ground- and aircraft-based observations, especially near the surface, indicating the limitations of the model to simulate primary pollutant concentrations at point observations when there are sources nearby. NOy comparisons found positive biases in the model when using both ground- and aircraft-based observations. The main reason for this overestimation was the consistent overestimation of peroxyacyl nitrates (PANs) in CMAQ results. Modeled O3 concentrations compared well with lowest biases and errors when compared to aircraft- and ground-based observations. The O3 vertical profile indicated a small positive bias in the model results near the surface similar to the comparison with ground-based observations. However, a negative bias in the model was observed above 2 km. Comparison with aircraft-based observations revealed significant overestimations in PAN and OH concentrations. Overestimation of the modeled OH concentrations is particularly important considering the effect of OH in atmospheric reactions.


Aircraft-based observations Community Multiscale Air Quality Modeling System CMAQ Ozone Nitrogen oxides Hydroxyl radical Peroxyacyl nitrates 

Supplementary material

11270_2013_1674_MOESM1_ESM.doc (1 mb)
ESM 1(DOC 1056 kb)


  1. ALA (2012), (American Lung Association) State of the Air 2012. http://www.stateoftheair.org/. Accessed 20 Dec 2012.
  2. Blond, N., Boersma, K. F., Eskes, H. J., van der A, R. J., Van Roozendael, M., De Smedt, I., Bergametti, G. & Vautard, R. (2007), Intercomparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over Western Europe, Journal of Geophysics Research-Atmosphere. 112.Google Scholar
  3. Boersma, K. F., Eskes, H. J. & Brinksma, E. J.: 2004, Error analysis for tropospheric NO2 retrieval from space, Journal of Geophysics Research-Atmosphere. 109.Google Scholar
  4. Byun, D., & Schere, K. L. (2006). Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Applied Mechanics Reviews, 59, 51–77.CrossRefGoogle Scholar
  5. CARB. (2009). The California Almanac of Emissions & Air Quality, 2009 Edition. Sacramento, CA: California Air Resources Board.Google Scholar
  6. Carter, W. P. L. (2000), Implementation of the SAPRC-99 Chemical Mechanism into the Models-3 Framework, United States Environmental Protection Agency.Google Scholar
  7. EPA (1995), CASTNet: National Dry Deposition Network 19901992 Status Report, Research Triangle Park, NC, U.S. Environmental Protection Agency.Google Scholar
  8. EPA (2013a), Air Quality System (AQS). http://www.epa.gov/ttn/airs/airsaqs/. Accessed 20 March 2013.
  9. EPA (2013b), Clean Air Markets. http://www.epa.gov/airmarkets/. Accessed 20 March 2013.
  10. Hansen, D. A., Edgerton, E. S., Hartsell, B. E., Jansen, J. J., Kandasamy, N., Hidy, G. M., & Blanchard, C. L. (2003). The southeastern aerosol research and characterization study: part 1—overview. Journal of Air Waste Management Association, 53, 1460–1471.CrossRefGoogle Scholar
  11. Henderson, B., Pinder, R., Goliff, W., Stockwell, W., Fahr, A., Sarwar, G., Hutzell, B., Mathur, R., Vizuete, W., & Cohen, R. (2009). The role of chemistry in under-predictions of NO 2 in the upper troposphere. San Francisco, California, USA: AGU Fall Meeting.Google Scholar
  12. Hodnebrog, O., Solberg, S., Stordal, F., Svendby, T. M., Simpson, D., Gauss, M., Hilboll, A., Pfister, G. G., Turquety, S., Richter, A., Burrows, J. P., & van der Gon, H. A. C. D. (2012). Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007. Atmospheric Chemistry and Physics, 12, 8727–8750.CrossRefGoogle Scholar
  13. Houyoux, M. R., & Vukovich, J. M. (1999). Updates to the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system and integration with Models-3, the emission inventory: regional strategies for the future. Raleigh, NC: Air & Waste Management Association.Google Scholar
  14. Hudman, R. C., Murray, L. T., Jacob, D. J., Turquety, S., Wu, S., Millet, D. B., Avery, M., Goldstein, A. H. & Holloway, J. (2009), North American influence on tropospheric ozone and the effects of recent emission reductions: Constraints from ICARTT observations, Journal of Geophysics Research-Atmosphere 114.Google Scholar
  15. Kaynak, B. (2009), Assimilation of Trace Gas Retrievals Obtained from Satellite (SCIAMACHY), Aircraft and Ground Observations into a Regional Scale Air Quality Model (CMAQ-DDM/3D), PhD Dissertation, School of Civil and Environmental Engineering, Georgia Institute of Technology.Google Scholar
  16. Kaynak, B., Hu, Y., Martin, R. V., Russell, A. G., Choi, Y., & Wang, Y. (2008). The effect of lightning NOx production on surface ozone in the continental United States. Atmospheric Chemistry and Physics, 8, 5151–5159.CrossRefGoogle Scholar
  17. Koike, M., Kondo, Y., Kawakami, S., Singh, H. B., Ziereis, H., & Merrill, J. T. (1996). Ratios of reactive nitrogen species over the Pacific during PEM-West A. Journal of Geophysics Research-Atmosphere, 101, 1829–1851.CrossRefGoogle Scholar
  18. Labrador, L. J., von Kuhlmann, R. & Lawrence, M. G. (2004), Strong sensitivity of the global mean OH concentration and the tropospheric oxidizing efficiency to the source of NOx from lightning, Geophysical Research Letters 31.Google Scholar
  19. Lamsal, L. N., Martin, R. V., van Donkelaar, A., Steinbacher, M., Celarier, E. A., Bucsela, E., Dunlea, E. J. & Pinto, J. P. (2008), Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument, Journal of Geophysics Research-Atmosphere. 113.Google Scholar
  20. MACTEC (2005), Documentation of the Revised 2002 Base Year, Revised 2018, and Initial 2009 Emission Inventories for VISTAS, Visibility Improvement State and Tribal Association of the Southeast (VISTAS).Google Scholar
  21. Martin, R. V., Chance, K., Jacob, D. J., Kurosu, T. P., Spurr, R. J. D., Bucsela, E., Gleason, J. F., Palmer, P. I., Bey, I., Fiore, A. M., Li, Q. B., Yantosca, R. M. & Koelemeijer, R. B. A. (2002), An improved retrieval of tropospheric nitrogen dioxide from GOME, Journal of Geophysics Research-Atmosphere. 107.Google Scholar
  22. Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P. I. & Evans, M. J.: 2003, Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns, Journal of Geophysics Research-Atmosphere. 108.Google Scholar
  23. Martin, R. V., Sioris, C. E., Chance, K., Ryerson, T. B., Bertram, T. H., Wooldridge, P. J., Cohen, R. C., Neuman, J. A., Swanson, A. & Flocke, F. M. (2006), Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America, Journal of Geophysics Research-Atmosphere. 111.Google Scholar
  24. McKeen, S. A., Gierczak, T., Burkholder, J. B., Wennberg, P. O., Hanisco, T. F., Keim, E. R., Gao, R. S., Liu, S. C., Ravishankara, A. R., & Fahey, D. W. (1997). The photochemistry of acetone in the upper troposphere: a source of odd-hydrogen radicals. Geophysical Research Letters, 24, 3177–3180.CrossRefGoogle Scholar
  25. Pleim, J. E. (2007). A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: application and evaluation in a mesoscale meteorological model. Journal of Applied Meteorology and Climatology, 46, 1396–1409.CrossRefGoogle Scholar
  26. Pont, V., Fontan, J., & Lopez, A. (2003). Variability of tropospheric ozone concentrations: comparison of ground-level data with aircraft measurements during the "O-3 Reg" campaign (19–21 July 2000). Atmospheric Research, 66, 83–105.CrossRefGoogle Scholar
  27. Real, E., Law, K. S., Weinzierl, B., Fiebig, M., Petzold, A., Wild, O., Methven, J., Arnold, S., Stohl, A., Huntrieser, H., Roiger, A., Schlager, H., Stewart, D., Avery, M., Sachse, G., Browell, E., Ferrare, R. & Blake, D.: (2007). Processes influencing ozone levels in Alaskan forest fire plumes during long-range transport over the North Atlantic, Journal of Geophysics Research-Atmosphere. 112.Google Scholar
  28. Russell, A. R., Perring, A. E., Valin, L. C., Bucsela, E. J., Browne, E. C., Min, K. E., Wooldridge, P. J., & Cohen, R. C. (2011). A high spatial resolution retrieval of NO2 column densities from OMI: method and evaluation. Atmospheric Chemistry and Physics, 11, 8543–8554.Google Scholar
  29. Seaman, N. L. (2000). Meteorological modeling for air-quality assessments. Atmospheric Environment, 34, 2231–2259.CrossRefGoogle Scholar
  30. Seinfeld, J. H., & Pandis, S. N. (1997). Atmospheric chemistry and physics: from air pollution to climate change. New York: Wiley Interscience.Google Scholar
  31. Simon, H., Baker, K. R., & Phillips, S. (2012). Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmospheric Environment, 61, 124–139.CrossRefGoogle Scholar
  32. Singh, H. B., Brune, W. H., Crawford, J. H., Jacob, D. J. & Russell, P. B.: 2006, Overview of the summer 2004 intercontinental chemical transport experiment—North America (INTEX-A), Journal of Geophysics Research-Atmosphere. 111.Google Scholar
  33. Tang, W., Cohan, D. S., Morris, G. A., Byun, D. W., & Luke, W. T. (2011). Influence of vertical mixing uncertainties on ozone simulation in CMAQ. Atmospheric Environment, 45, 2898–2909.CrossRefGoogle Scholar
  34. Wang, P., Stammes, P., Van der, A. R. J., Pinardi, G., & Van Roozendael, M. (2008). FRESCO+: An improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals. Atmospheric Chemistry and Physics, 8, 6565–6576.Google Scholar
  35. Wang, S. X., Xing, J., Chatani, S., Hao, J. M., Klimont, Z., Cofala, J., & Amann, M. (2011). Verification of anthropogenic emissions of China by satellite and ground observations. Atmospheric Environment, 45, 6347–6358.CrossRefGoogle Scholar
  36. Yu, S., Mathur, R., Sarwar, G., Kang, D., Tong, D., Pouliot, G., & Pleim, J. (2010). Eta-CMAQ air quality forecasts for O3 and related species using three different photochemical mechanisms (CB4, CB05, SAPRC-99): comparisons with measurements during the 2004 ICARTT study. Atmospheric Chemistry and Physics, 10, 3001–3025.Google Scholar
  37. Yu, S. C., Mathur, R., Schere, K., Kang, D. W., Pleim, J. & Otte, T. L.: 2007, A detailed evaluation of the Eta-CMAQ forecast model performance for O3, its related precursors, and meteorological parameters during the 2004 ICARTT study, Journal of Geophysics Research-Atmosphere. 112.Google Scholar
  38. Zhang, M. G., Akimoto, H., & Uno, I. (2006a). A three-dimensional simulation of HOx concentrations over East Asia during TRACE-P. Journal of Atmospheric Chemistry, 54, 233–254.CrossRefGoogle Scholar
  39. Zhang, M. G., Uno, I., Zhang, R. J., Han, Z. W., Wang, Z. F., & Pu, Y. F. (2006b). Evaluation of the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system with observations obtained during the TRACE-P experiment: comparison of ozone and its related species. Atmospheric Environment, 40, 4874–4882.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Burcak Kaynak
    • 1
    • 2
  • Yongtao Hu
    • 1
  • Armistead G. Russell
    • 1
  1. 1.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Civil Engineering, Department of Environmental EngineeringIstanbul Technical UniversityMaslakTurkey

Personalised recommendations