Skip to main content

Advertisement

Log in

Analysis of NO, NO2, and O3 Between Model Simulations and Ground-Based, Aircraft, and Satellite Observations

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Regional air quality model simulations with Community Multiscale Air Quality Modeling System (CMAQ) were evaluated using multiple platforms for a 2-month summer period. In this context, inter-comparisons of the model with available satellite-based observations of NO2, ground- and aircraft-based observations of NO, NO2, NO x , NO y , and O3 were performed. NO2 comparisons found low biases in CMAQ results when using both ground- and satellite-based observations. Aircraft-based observations, on the other hand, indicated a higher positive bias and error, but the overall NO2 vertical profile was captured well by the model. The highest correlation was observed with satellite-based NO2 observations indicating that the model and satellite found similar spatial gradients. NO concentrations were underestimated in comparison with both ground- and aircraft-based observations, especially near the surface, indicating the limitations of the model to simulate primary pollutant concentrations at point observations when there are sources nearby. NO y comparisons found positive biases in the model when using both ground- and aircraft-based observations. The main reason for this overestimation was the consistent overestimation of peroxyacyl nitrates (PANs) in CMAQ results. Modeled O3 concentrations compared well with lowest biases and errors when compared to aircraft- and ground-based observations. The O3 vertical profile indicated a small positive bias in the model results near the surface similar to the comparison with ground-based observations. However, a negative bias in the model was observed above 2 km. Comparison with aircraft-based observations revealed significant overestimations in PAN and OH concentrations. Overestimation of the modeled OH concentrations is particularly important considering the effect of OH in atmospheric reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ALA (2012), (American Lung Association) State of the Air 2012. http://www.stateoftheair.org/. Accessed 20 Dec 2012.

  • Blond, N., Boersma, K. F., Eskes, H. J., van der A, R. J., Van Roozendael, M., De Smedt, I., Bergametti, G. & Vautard, R. (2007), Intercomparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over Western Europe, Journal of Geophysics Research-Atmosphere. 112.

  • Boersma, K. F., Eskes, H. J. & Brinksma, E. J.: 2004, Error analysis for tropospheric NO2 retrieval from space, Journal of Geophysics Research-Atmosphere. 109.

  • Byun, D., & Schere, K. L. (2006). Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Applied Mechanics Reviews, 59, 51–77.

    Article  Google Scholar 

  • CARB. (2009). The California Almanac of Emissions & Air Quality, 2009 Edition. Sacramento, CA: California Air Resources Board.

    Google Scholar 

  • Carter, W. P. L. (2000), Implementation of the SAPRC-99 Chemical Mechanism into the Models-3 Framework, United States Environmental Protection Agency.

  • EPA (1995), CASTNet: National Dry Deposition Network 19901992 Status Report, Research Triangle Park, NC, U.S. Environmental Protection Agency.

  • EPA (2013a), Air Quality System (AQS). http://www.epa.gov/ttn/airs/airsaqs/. Accessed 20 March 2013.

  • EPA (2013b), Clean Air Markets. http://www.epa.gov/airmarkets/. Accessed 20 March 2013.

  • Hansen, D. A., Edgerton, E. S., Hartsell, B. E., Jansen, J. J., Kandasamy, N., Hidy, G. M., & Blanchard, C. L. (2003). The southeastern aerosol research and characterization study: part 1—overview. Journal of Air Waste Management Association, 53, 1460–1471.

    Article  CAS  Google Scholar 

  • Henderson, B., Pinder, R., Goliff, W., Stockwell, W., Fahr, A., Sarwar, G., Hutzell, B., Mathur, R., Vizuete, W., & Cohen, R. (2009). The role of chemistry in under-predictions of NO 2 in the upper troposphere. San Francisco, California, USA: AGU Fall Meeting.

    Google Scholar 

  • Hodnebrog, O., Solberg, S., Stordal, F., Svendby, T. M., Simpson, D., Gauss, M., Hilboll, A., Pfister, G. G., Turquety, S., Richter, A., Burrows, J. P., & van der Gon, H. A. C. D. (2012). Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007. Atmospheric Chemistry and Physics, 12, 8727–8750.

    Article  CAS  Google Scholar 

  • Houyoux, M. R., & Vukovich, J. M. (1999). Updates to the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system and integration with Models-3, the emission inventory: regional strategies for the future. Raleigh, NC: Air & Waste Management Association.

    Google Scholar 

  • Hudman, R. C., Murray, L. T., Jacob, D. J., Turquety, S., Wu, S., Millet, D. B., Avery, M., Goldstein, A. H. & Holloway, J. (2009), North American influence on tropospheric ozone and the effects of recent emission reductions: Constraints from ICARTT observations, Journal of Geophysics Research-Atmosphere 114.

  • Kaynak, B. (2009), Assimilation of Trace Gas Retrievals Obtained from Satellite (SCIAMACHY), Aircraft and Ground Observations into a Regional Scale Air Quality Model (CMAQ-DDM/3D), PhD Dissertation, School of Civil and Environmental Engineering, Georgia Institute of Technology.

  • Kaynak, B., Hu, Y., Martin, R. V., Russell, A. G., Choi, Y., & Wang, Y. (2008). The effect of lightning NO x production on surface ozone in the continental United States. Atmospheric Chemistry and Physics, 8, 5151–5159.

    Article  CAS  Google Scholar 

  • Koike, M., Kondo, Y., Kawakami, S., Singh, H. B., Ziereis, H., & Merrill, J. T. (1996). Ratios of reactive nitrogen species over the Pacific during PEM-West A. Journal of Geophysics Research-Atmosphere, 101, 1829–1851.

    Article  CAS  Google Scholar 

  • Labrador, L. J., von Kuhlmann, R. & Lawrence, M. G. (2004), Strong sensitivity of the global mean OH concentration and the tropospheric oxidizing efficiency to the source of NO x from lightning, Geophysical Research Letters 31.

  • Lamsal, L. N., Martin, R. V., van Donkelaar, A., Steinbacher, M., Celarier, E. A., Bucsela, E., Dunlea, E. J. & Pinto, J. P. (2008), Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument, Journal of Geophysics Research-Atmosphere. 113.

  • MACTEC (2005), Documentation of the Revised 2002 Base Year, Revised 2018, and Initial 2009 Emission Inventories for VISTAS, Visibility Improvement State and Tribal Association of the Southeast (VISTAS).

  • Martin, R. V., Chance, K., Jacob, D. J., Kurosu, T. P., Spurr, R. J. D., Bucsela, E., Gleason, J. F., Palmer, P. I., Bey, I., Fiore, A. M., Li, Q. B., Yantosca, R. M. & Koelemeijer, R. B. A. (2002), An improved retrieval of tropospheric nitrogen dioxide from GOME, Journal of Geophysics Research-Atmosphere. 107.

  • Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P. I. & Evans, M. J.: 2003, Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns, Journal of Geophysics Research-Atmosphere. 108.

  • Martin, R. V., Sioris, C. E., Chance, K., Ryerson, T. B., Bertram, T. H., Wooldridge, P. J., Cohen, R. C., Neuman, J. A., Swanson, A. & Flocke, F. M. (2006), Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America, Journal of Geophysics Research-Atmosphere. 111.

  • McKeen, S. A., Gierczak, T., Burkholder, J. B., Wennberg, P. O., Hanisco, T. F., Keim, E. R., Gao, R. S., Liu, S. C., Ravishankara, A. R., & Fahey, D. W. (1997). The photochemistry of acetone in the upper troposphere: a source of odd-hydrogen radicals. Geophysical Research Letters, 24, 3177–3180.

    Article  CAS  Google Scholar 

  • Pleim, J. E. (2007). A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: application and evaluation in a mesoscale meteorological model. Journal of Applied Meteorology and Climatology, 46, 1396–1409.

    Article  Google Scholar 

  • Pont, V., Fontan, J., & Lopez, A. (2003). Variability of tropospheric ozone concentrations: comparison of ground-level data with aircraft measurements during the "O-3 Reg" campaign (19–21 July 2000). Atmospheric Research, 66, 83–105.

    Article  CAS  Google Scholar 

  • Real, E., Law, K. S., Weinzierl, B., Fiebig, M., Petzold, A., Wild, O., Methven, J., Arnold, S., Stohl, A., Huntrieser, H., Roiger, A., Schlager, H., Stewart, D., Avery, M., Sachse, G., Browell, E., Ferrare, R. & Blake, D.: (2007). Processes influencing ozone levels in Alaskan forest fire plumes during long-range transport over the North Atlantic, Journal of Geophysics Research-Atmosphere. 112.

  • Russell, A. R., Perring, A. E., Valin, L. C., Bucsela, E. J., Browne, E. C., Min, K. E., Wooldridge, P. J., & Cohen, R. C. (2011). A high spatial resolution retrieval of NO2 column densities from OMI: method and evaluation. Atmospheric Chemistry and Physics, 11, 8543–8554.

    Google Scholar 

  • Seaman, N. L. (2000). Meteorological modeling for air-quality assessments. Atmospheric Environment, 34, 2231–2259.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (1997). Atmospheric chemistry and physics: from air pollution to climate change. New York: Wiley Interscience.

    Google Scholar 

  • Simon, H., Baker, K. R., & Phillips, S. (2012). Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmospheric Environment, 61, 124–139.

    Article  CAS  Google Scholar 

  • Singh, H. B., Brune, W. H., Crawford, J. H., Jacob, D. J. & Russell, P. B.: 2006, Overview of the summer 2004 intercontinental chemical transport experiment—North America (INTEX-A), Journal of Geophysics Research-Atmosphere. 111.

  • Tang, W., Cohan, D. S., Morris, G. A., Byun, D. W., & Luke, W. T. (2011). Influence of vertical mixing uncertainties on ozone simulation in CMAQ. Atmospheric Environment, 45, 2898–2909.

    Article  CAS  Google Scholar 

  • Wang, P., Stammes, P., Van der, A. R. J., Pinardi, G., & Van Roozendael, M. (2008). FRESCO+: An improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals. Atmospheric Chemistry and Physics, 8, 6565–6576.

  • Wang, S. X., Xing, J., Chatani, S., Hao, J. M., Klimont, Z., Cofala, J., & Amann, M. (2011). Verification of anthropogenic emissions of China by satellite and ground observations. Atmospheric Environment, 45, 6347–6358.

    Article  CAS  Google Scholar 

  • Yu, S., Mathur, R., Sarwar, G., Kang, D., Tong, D., Pouliot, G., & Pleim, J. (2010). Eta-CMAQ air quality forecasts for O3 and related species using three different photochemical mechanisms (CB4, CB05, SAPRC-99): comparisons with measurements during the 2004 ICARTT study. Atmospheric Chemistry and Physics, 10, 3001–3025.

    Google Scholar 

  • Yu, S. C., Mathur, R., Schere, K., Kang, D. W., Pleim, J. & Otte, T. L.: 2007, A detailed evaluation of the Eta-CMAQ forecast model performance for O3, its related precursors, and meteorological parameters during the 2004 ICARTT study, Journal of Geophysics Research-Atmosphere. 112.

  • Zhang, M. G., Akimoto, H., & Uno, I. (2006a). A three-dimensional simulation of HO x concentrations over East Asia during TRACE-P. Journal of Atmospheric Chemistry, 54, 233–254.

    Article  CAS  Google Scholar 

  • Zhang, M. G., Uno, I., Zhang, R. J., Han, Z. W., Wang, Z. F., & Pu, Y. F. (2006b). Evaluation of the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system with observations obtained during the TRACE-P experiment: comparison of ozone and its related species. Atmospheric Environment, 40, 4874–4882.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NASA projects (NNG04GE15G, NNX11AI55G), EPA grants (RD83096001, RD83107601 and RD83215901). We would like to thank Randal Martin for providing the SCIAMACHY NO2 retrievals and ICARTT team for having the aircraft-based measurements publicly available. NLDN data used for developing the lightning NO x emissions is provided by the NASA Lightning Imaging Sensor (LIS) instrument team and the LIS data center via the Global Hydrology Resource Center (GHRC) located at the Global Hydrology and Climate Center (GHCC), Huntsville, Alabama through a license agreement with Vaisala, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burcak Kaynak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1056 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaynak, B., Hu, Y. & Russell, A.G. Analysis of NO, NO2, and O3 Between Model Simulations and Ground-Based, Aircraft, and Satellite Observations. Water Air Soil Pollut 224, 1674 (2013). https://doi.org/10.1007/s11270-013-1674-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1674-2

Keywords

Navigation