Skip to main content

Differential Effects of Oxidised and Reduced Nitrogen on Vegetation and Soil Chemistry of Species-Rich Acidic Grasslands

Abstract

Emissions and deposition of ammonia and nitrogen oxides have strongly increased since the 1950s. This has led to significant changes in the nitrogen (N) cycle, vegetation composition and plant diversity in many ecosystems of high conservation value in Europe. As a consequence of different regional pollution levels and of the increased importance of reduced N in the near future, determining the effect of different forms of N is an important task for understanding the consequences of atmospheric N inputs. We have initiated three replicated N addition experiments in species-rich, acidic grasslands spanning a climatic gradient in the Atlantic biogeographic region of Europe in Norway, Wales and France at sites with low levels of pollution. N was added in two doses (0 and 70 kg N ha−1 year−1 above background) and in three forms (oxidised N, reduced N and a 50–50 combination). After 2.5 years of N additions, the effects of these treatments on plant biomass, plant nutritional status, soil pH and soil nutrient availability were determined. Impacts of the N additions were observed within the 2.5-year research period. In some cases, the first signs of differential effects of N form could also be demonstrated. In the French site, for example, grass biomass was significantly increased by the oxidised N treatments but decreased by the reduced N treatments. In the Norwegian site, the reduced N treatments significantly reduced soil pH, whereas oxidised N did not. Effects on nutrient availability were also observed. These experiments will be continued to elucidate the longer term impacts of N deposition on these grasslands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Achermann, B. & Bobbink, R. eds. (2003) Empirical critical loads for nitrogen. Environmental Documentation No. 164 Air. Swiss Agency for Environment, Forest and Landscape SAEFL, Berne, 327p.

  • Aerts, R., & Chapin, F. S. (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1–67.

    Article  CAS  Google Scholar 

  • Arroniz-Crespo, M., Leake, J. R., Horton, P., & Phoenix, G. K. (2008). Bryophyte physiological responses to, and recovery from, long-term nitrogen deposition and phosphorus fertilisation in acidic grassland. New Phytologist, 180, 864–874.

    Article  CAS  Google Scholar 

  • Asman, W. A. H., Sutton, M. A., & Schjorring, J. K. (1998). Ammonia: emission, atmospheric transport and deposition. New Phytologist, 139, 27–48.

    Article  CAS  Google Scholar 

  • Barraclough, P. B. (1993). Nutrient storage pool concentration in plants as diagnostic indicators of nutreint sufficiency. In N. J. Barrow (Ed.), Plant nutrition: from genetic engineering to field practice (pp. 195–198). Dordecht: Kluwer.

    Chapter  Google Scholar 

  • Berlin, G. A. I., Linusson, A., and Olsson, E. G. A. (2000). Vegetation changes in semi-natural meadows with unchanged management in Southern Sweden, 1965–1990. Acta Oecologica, 21, 125–138.

    Google Scholar 

  • Bobbink, R. (1991). Effects of nutrient enrichment in Dutch chalk grassland. Journal of Applied Ecology, 28, 28–41.

    Article  Google Scholar 

  • Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20, 30–59.

    Article  CAS  Google Scholar 

  • Bobbink, R. & Hettelingh, J-P. (Eds.) (2011) Review and revision of empirical critical loads and dose-response. Coordination Centre for Effects, National Institute for Public Health and the Environment (RIVM), The Netherlands.

  • Bobbink, R., Hornung, M., & Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717–738.

    Article  CAS  Google Scholar 

  • Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Wisconsin: American Society of Agronomy.

    Google Scholar 

  • Carroll, J. A., Caporn, S. J. M., Johnson, D., Morecroft, M. D., & Lee, J. A. (2003). The interactions between plant growth, vegetation structure and soil processes in semi-natural acidic and calcareous grasslands receiving long-term inputs of simulated pollutant nitrogen deposition. Environmental Pollution, 121, 363–376.

    Article  CAS  Google Scholar 

  • Clark, C. M., & Tilman, D. (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712–715.

    Article  CAS  Google Scholar 

  • De Graaf, M. C. C., Bobbink, R., Smits, N. A. C., Van Diggelen, R., & Roelofs, J. G. M. (2009). Biodiversity, vegetation gradients and key biogeochemical processes in the heathland landscape. Biological Conservation, 142, 2191–2201.

    Article  Google Scholar 

  • De Graaf, M. C. C., Verbeek, P. J. M., Bobbink, R., & Roelofs, J. G. M. (1998). Restoration of species-rich dry heaths, the importance of appropriate soil conditions. Acta Botanica Neerlandica, 47, 98–111.

    Google Scholar 

  • Dentener, F., Drevet, J., Lamarque, J. F., Bey, I., Eickhout, B., Fiore, A. M., et al. (2006). Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochemical Cycles, 20.

  • Duprè, C., Stevens, C. J., Ranke, T., Bleeker, A., Peppler-Lisbach, C., Gowing, D. J. G., et al. (2010). Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Global Change Biology, 16, 344–357.

    Article  Google Scholar 

  • Ellenberg, H. (1996). Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Stuttgart: Ulmer.

    Google Scholar 

  • Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schlesselmann, K., Weber, M. S., & Hardtle, W. (2012). Nitrogen deposition increases susceptibility to drought—experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and Soil, 353, 59–71.

    Article  CAS  Google Scholar 

  • Galloway, J., & Cowling, E. B. (2002). Reactive nitrogen and the world: 200 years of change. Ambio, 31, 64–71.

    Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., et al. (2008). Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science, 320, 889–892.

    Article  CAS  Google Scholar 

  • Güsewell, S., & Koerselman, W. (2002). Variation in nitrogen and phosphorous concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5, 37–61.

    Article  Google Scholar 

  • Hautier, Y., Niklaus, P. A., & Hector, A. (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636–638.

    Article  CAS  Google Scholar 

  • Horswill, P., O'Sullivan, O., Phoenix, G. K., Lee, J. A., & Leake, J. R. (2008). Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environmental Pollution, 155, 336–349.

    Article  CAS  Google Scholar 

  • Johnston, A. E., Goulding, K. W. T., & Poulton, P. R. (1986). Soil acidification during more than 100 years under permanent grassland and woodland at Rothamstead. Soil Use and Management, 2, 3–10.

    Article  Google Scholar 

  • Jones, M. L. M., Wallace, H. L., Norris, D., Brittain, S. A., Haria, S., Jones, R. E., et al. (2004). Changes in vegetation and soil characteristics in coastal sand dunes along a gradient of atmospheric nitrogen deposition. Plant Biology, 6, 598–605.

    Article  CAS  Google Scholar 

  • Kleijn, D., Bekker, R. M., Bobbink, R., De Graaf, M. C. C., & Roelofs, J. G. M. (2007). In search for key biogeochemical factors affecting plant species persistence in heathland and acidic grasslands: a comparison of common and rare species. Journal of Applied Ecology, 45, 680–687.

    Article  Google Scholar 

  • LeBauer, D. S., & Treseder, K. K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371–379.

    Article  Google Scholar 

  • Maskell, L. C., Smart, S. M., Bullock, J. M., Thompson, K., & Stevens, C. J. (2010). Nitrogen deposition causes widespread species loss in British Habitats. Global Change Biology, 16, 671–679.

    Article  Google Scholar 

  • Matson, P., Lohse, K. A., & Hall, S. J. (2002). The gloabalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio, 31, 113–119.

    Google Scholar 

  • Morecroft, M. D., Sellers, E. K., & Lee, J. A. (1994). An experimental investigation into the effects of atmospheric deposition on two semi-naural grasslands. Journal of Ecology, 82, 475–483.

    Article  CAS  Google Scholar 

  • Mountford, J. O., Lakhani, K. H., & Kirkham, F. W. (1993). Experimental assessment of the effects of nitrogen addition under hay-cutting and aftermath grazing on the vegetation of meadows on a Somerset peat moor. Journal of Applied Ecology, 30, 321–332.

    Article  Google Scholar 

  • Phoenix, G. K., Booth, R. E., Leake, J. R., Read, D. J., Grime, P., & Lee, J. A. (2003). Effects of enhanced nitrogen deposition and phosphorus limitation on nitrogen budgets of semi-natural grasslands. Global Change Biology, 9, 1309–1321.

    Article  Google Scholar 

  • Phoenix, G. K., Emmett, B. A., Britton, A. J., Caporn, S. J. M., Dise, N. B., Helliwell, R., et al. (2012). Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Global Change Biology, 18, 1197–1215.

    Article  Google Scholar 

  • Pieterse, G., Bleeker, A., Vermeulen, A. T., Wu, Y., & Erisman, J. W. (2007). High resolution modelling of atmosphere-canopy exchange of acidifying and eutrophying components and carbon dioxide for European forests. Tellus, 59B, 412–424.

    CAS  Google Scholar 

  • Pitcairn, C. E. R., Leith, I. D., Fowler, D., Hargreaves, K. J., Moghaddam, M., Kennedy, V. H., et al. (2001). Foliar nitrogen as an indicator of nitrogen deposition and critical loads exceedance on a European scale. Water, Air, and Soil Pollution, 130, 1037–1042.

    Article  Google Scholar 

  • Roelofs, J. G. M. (1986). The effect of airborne sulphur and nitrogen deposition on aquatic and terrestrial heathland vegetation. Experientia, 42, 372–377.

    Article  CAS  Google Scholar 

  • RoTAP (2012) Review of transboundary air pollution: acidification, eutrophication, ground level ozone and heavy metals in the UK. Ediburgh, Centre for Ecology and Hydrology.

  • Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., et al. (2000). Biodiversity—global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.

    Article  CAS  Google Scholar 

  • Schwickerath, M. (1944). Das Hohe Venn und seine Randgebiete. Pflanzensoziologie, 6, 1–278.

    Google Scholar 

  • Skiba, U., Cresser, M. S., Derwent, R. G., & Futty, D. W. (1989). Peat acidification in Scotland. Nature, 337, 68–70.

    Article  CAS  Google Scholar 

  • Smits, N. A. C., Bobbink, R., Laanbroek, H. J., Paalman, A. J., & Hefting, M. M. (2010). Repression of potential nitrification activities by matgrass sward species. Plant and Soil, 337, 435–445.

    Article  CAS  Google Scholar 

  • Ste-Marie, C., & Parè, D. (1999). Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biology and Biochemistry, 31, 1579–1589.

    Article  CAS  Google Scholar 

  • Stevens, C. J., Dise, N. B., Gowing, D. J., & Mountford, J. O. (2006). Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controls. Global Change Biology, 12, 1823–1833.

    Article  Google Scholar 

  • Stevens, C. J., Dise, N. B., Mountford, J. O., & Gowing, D. J. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876–1879.

    Article  CAS  Google Scholar 

  • Stevens, C. J., Dupre, C., Dorland, E., Gaudnik, C., Gowing, D. J. G., Bleeker, A., et al. (2011a). The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe. Environmental Pollution, 159, 2243–2250.

    Article  CAS  Google Scholar 

  • Stevens, C. J., Duprè, C., Dorland, E., Gaudnik, C., Gowing, D. J. G., Bleeker, A., et al. (2010). Nitrogen deposition threatens species richness of grasslands across Europe. Environmental Pollution, 158, 2940–2945.

    Article  CAS  Google Scholar 

  • Stevens, C. J., Dupre, C., Gaudnik, C., Dorland, E., Dise, N. B., Gowing, D. J., et al. (2011b). Changes in species composition of European acid grasslands observed along a gradient of nitrogen deposition. Journal of Vegetation Science, 22, 207–215.

    Article  Google Scholar 

  • Subbarao, G. V., Rondon, M., Ito, O., Ishikawa, T., Rao, I. M., Nakahara, K., et al. (2007). Biological nitrification inhibition (BNI)—is it a widespread phenomenon? Plant and Soil, 294, 5–18.

    Article  CAS  Google Scholar 

  • Tamm, C. O. (1991). Nitrogen in terrestrial ecosystems: questions of productivity, vegetational changes, and ecosystem stability. Berlin: Springer.

    Book  Google Scholar 

  • van den Berg, L. J. L., Dorland, E., Verger, P., Hart, M. A. C., Bobbink, R., & Roelofs, J. G. M. (2005). Decline of acid sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytologist, 166, 551–564.

    Article  Google Scholar 

  • van den Berg, L. J. L., Peters, C. J. H., Ashmore, M. R., & Roelofs, J. G. M. (2008). Reduced nitrogen has a greater effect than oxidised nitrogen on dry heathland vegetation. Environmental Pollution, 154, 359–369.

    Article  Google Scholar 

  • Zakir, H. A. K. M., Subbarao, G. V., Pearse, S. J., Gopalakrishnan, S., Ito, O., Ishikawa, T., et al. (2008). Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytologist, 180, 442–451.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the European Science Foundation through the EURODIVERSITY-programme, and national funds were provided by DfG (Germany), NERC (United Kingdom) and NWO (The Netherlands) and INRA, ADEME and Aquitane Region (France). We are grateful to Western AG innovations, everyone who assisted with field and laboratory work, and conservation agencies and land owners who gave permission to run this experiment on their property.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carly J. Stevens.

Additional information

Edu Dorland and Carly J. Stevens contributed equally to this paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dorland, E., Stevens, C.J., Gaudnik, C. et al. Differential Effects of Oxidised and Reduced Nitrogen on Vegetation and Soil Chemistry of Species-Rich Acidic Grasslands. Water Air Soil Pollut 224, 1664 (2013). https://doi.org/10.1007/s11270-013-1664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1664-4

Keywords

  • European acidic grasslands
  • Nitrogen deposition
  • Nitrogen supply rate
  • Oxidised nitrogen
  • Reduced nitrogen
  • Species richness