Skip to main content

Effects of Vegetable Oil Pollution on Aquatic Macroinvertebrate Assemblage in a Freshwater Wetland and Its Use as a Remediation Tool

Abstract

The occurrence, as well as the environmental fate and impact, of vegetable oil spills in freshwater wetlands have until now been unreported. Thus, the largest global vegetable oil spillage in a freshwater wetland, which occurred at the Con Joubert Bird Sanctuary wetland in 2007, presented an ideal opportunity to evaluate these impacts. Five post-spill sampling sites were selected within the wetland from which a variety of abiotic and biotic samples were collected bi-monthly over a period of 12 months. Abiotic variables included the sediment and water column oil concentrations, total nitrogen, total phosphorous, biochemical oxygen demand (BOD), silica, chlorophyll a, as well as in situ measurements of pH, electrical conductivity, and dissolved oxygen. Aquatic macroinvertebrates were chosen as biotic indicators in the study field due to their wide applicability as water quality indicators and were thus collected at each site. Spatial and temporal changes in total nitrogen, total phosphorous, and chlorophyll a concentrations as well as changes in pH were observed. The oil spillage also resulted in an increase in tolerant macroinvertebrate taxa, mainly Chironomidae and Psychodidae, at the sites closest to the source of the spillage. These two taxa, and to a lesser extent, Syrphidae, were identified as potentially useful indicators to determine the extent of vegetable oil contamination within a freshwater wetland. Furthermore, monitoring of these indicator taxa can be a useful management tool to determine the recovery of freshwater wetlands after vegetable oil spills. In the study, a static battery of bioassays of different biotic trophic levels was also employed to determine the adverse effects of the spilled vegetable oil on the biotic environment. It was evident from the result of the static battery of bioassay that adverse effects of the sunflower oil differ between trophic levels. The latter was in relationship with the data obtained from the field macroinvertebrate study, indicating that certain macroinvertebrate families were more tolerant to the adverse effects of sunflower oil than other families.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. APHA, AWWA & WPCF. (1992). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: American Public Health Association, American Water Works Association and Water Pollution Control Federation.

    Google Scholar 

  2. Arimoro, F. O., Ikomi, R. B., & Iwegbue, C. M. A. (2007). Water quality changes in relation to Diptera community patterns and diversity measured at an organic effluent impacted stream in the Niger Delta, Nigeria. Ecological Indicators, 7, 541–552.

    Article  CAS  Google Scholar 

  3. Assmuth, T., & Penttilä, S. (1995). Characteristics, determinants and interpretations of acute lethality in Daphnids exposed to complex waste leachates. Aquatic Toxicology, 31, 125–141.

    Article  CAS  Google Scholar 

  4. Astin, L. A. (2006). Data synthesis and bioindicator development for non-tidal streams in the interstate Potomac River basin, USA. Ecological Indicators, 6, 664–685.

    Article  Google Scholar 

  5. Barkay, T., Liebert, C., & Gillman, M. (1989). Environmental significance of the potential for mer(Tn21)-mediated reduction of Hg2+ to Hg0 in natural waters. Applied and Environmental Microbiology, 55, 1196–2002.

    CAS  Google Scholar 

  6. Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., & Havaux, M. (2001). Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta, 212, 696–709.

    Article  CAS  Google Scholar 

  7. Baun, A., Jensen, S. D., Bjerg, P. L., Christensen, T. H., & Nyholm, N. (2000). Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark). Environmental Science and Technology, 34, 1647–1652.

    Article  CAS  Google Scholar 

  8. Blaise, C., Gagné, F., Chévre, N., Harwood, M., Lee, K., Lappalainen, J., et al. (2004). Toxicity assessment of oil-contaminated freshwater sediments. Environmental Toxicology, 19, 267–273.

    Article  CAS  Google Scholar 

  9. Bury, R. B. (1972). The effects of diesel fuel on a stream fauna. California Fish and Game, 58, 291–295.

    Google Scholar 

  10. Cairns, J., McCormick, P. V., & Niederlehner, B. R. (1993). A proposed framework for developing indicators of ecosystem health. Hydrobiologia, 263, 1–44.

    Article  Google Scholar 

  11. Calanog, S. A., Chen, J. Y., & Toia, R. F. (1999). Preliminary evaluation of potential impacts of non-petroleum oils on the aquatic environments. Proceedings of the 1999 International Oil Spill Conference. Washington, DC: American Petroleum Institute.

    Google Scholar 

  12. Camargo, J. A., Alonso, A., & De La Puente, M. (2004). Multimetric assessment of nutrient enrichment in impounded rivers based on benthic macroinvertebrates. Environmental Monitoring and Assessment, 96, 1–3.

    Article  Google Scholar 

  13. Cherrington, C. A., Hinton, M., Mead, G. C., & Chopra, I. (1991). Organic acids: chemistry, antibacterial activity and practical applications. Advances in Microbial Physiology, 32, 87–108.

    Article  CAS  Google Scholar 

  14. Chutter, F. M. (1998). Research on the rapid biological assessment of water quality: Impacts in streams and rivers. WRC Report No. 422/1/98. Pretoria: Water Research Commission.

    Google Scholar 

  15. Clarke, K. R., & Gorley, R. N. (2006). Primer v6: User manual or tutorial. Plymouth: PRIMER-E.

    Google Scholar 

  16. Clements, W. H. (1994). Benthic invertebrate community responses to heavy metals in the upper Arkansas River basin, Colorado. Journal of the North American Benthological Society, 13, 30–44.

    Article  Google Scholar 

  17. Clément, B., Devaux, A., Perrodin, Y., Danjean, M., & Ghidini-Fatus, M. (2004). Assessment of sediment ecotoxicity and genotoxicity in freshwater laboratory microcosms. Ecotoxicology, 12, 323–333.

    Article  Google Scholar 

  18. Collier, K. J. (1995). Environmental factors affecting the taxonomic composition of aquatic macroinvertebrate communities in lowland waterways of Northland, New Zealand. New Zealand Journal of Marine and Freshwater Research, 4, 453–465.

    Article  Google Scholar 

  19. Cornish, A., Battersby, N. S., & Watkinson, R. J. (1993). Environmental fate of mineral, vegetable and transesterified vegetable oils. Pesticide Science, 37, 173–178.

    Article  CAS  Google Scholar 

  20. Cranston, P. S. (1995). Introduction. In P. D. Armitage, P. S. Cranston, & L. C. V. Pinder (Eds.), The Chironomidae: Biology and ecology of non-biting midges. London: Chapman and Hall.

    Google Scholar 

  21. Crump-Wiesner, H. J., & Jennings, A. L. (1975). Properties and effects of nonpetroleum oils. Proceedings of 1975 Conference on Prevention and Control of Pollution. Washington, DC: American Petroleum Institute.

    Google Scholar 

  22. Dallas, H. F., & Day, J. A. (1993). The effect of water quality variables on riverine ecosystems: A review. WRC report no. TT 61/93. Pretoria: Water Research Commission.

    Google Scholar 

  23. De Klerk, A. R., & Wepener, V. (2011). The influence of biotope and sampling method on the assessment of the invertebrate community structure in endorheic reed pans in South Africa. African Journal of Aquatic Science, 36, 67–74.

    Article  Google Scholar 

  24. De la Rey, P. A., Taylor, J. C., Laas, A., Van Rensburg, L., & Vosloo, A. (2004). Determining the possible application value of diatoms as indicators of general water quality: a comparison with SASS 5. Water SA, 30, 325–332.

    Google Scholar 

  25. Dickens, C. W. S., & Graham, P. M. (2002). The South African Scoring System (SASS) version 5: rapid bioassessment method for rivers. African Journal of Aquatic Science, 27, 1–10.

    Article  Google Scholar 

  26. DWAF. (1996). South African water quality guidelines. Volume 7: Aquatic ecosystems (1st ed.). Pretoria: Department of Water Affairs and Forestry.

    Google Scholar 

  27. Fabregas, J., Herrero, C., & Veiga, M. (1984). Effect of oil and dispersant on growth and chlorophyll a content of the marine microalga Tetraselmis suecica. Applied and Environmental Microbiology, 47, 445–447.

    CAS  Google Scholar 

  28. French-McCay, D. P. (2002). Development and application of an oil toxicity and exposure model, OilToxEx. Environmental Toxicology and Chemistry, 21, 2080–2094.

    Article  CAS  Google Scholar 

  29. Frink, L. (1994). Statement on regulatory standards for the transportation of edible oil. Tri-State Bird Rescue and Research, 30.

  30. Gesteira, G. J. L., Dauvin, J. C., & Fraga, M. S. (2003). Taxonomic level for assessing oil spill effects on soft-bottom sublittoral benthic communities. Marine Pollution Bulletin, 46, 562–572.

    Article  Google Scholar 

  31. Greer, C. W., Fortin, N., Roy, R., Whyte, L. G., & Lee, K. (2001). Microbial population dynamics and degradation activity in response to a controlled oil spill on a freshwater wetland. Bioremediation Journal, 6, 2002.

    Google Scholar 

  32. Hauer, F. R., & Lamberti, G. A. (2006). Methods in stream ecology (pp. 1–877). California, USA: Academic, San Diego.

    Google Scholar 

  33. Idyll, C. P. (1943). Bottom fauna of portions of the Cawichan River, B.C. Journal of the Fisheries Research Board of Canada, 6, 133–139.

    Article  Google Scholar 

  34. James, A. (1979). The value of biological indicators in relation to other parameters of water quality. In A. James & L. Evison (Eds.), Biological indicators of water quality. Chichester: Wiley-Interscience.

    Google Scholar 

  35. Kato, H., et al. (2006). High degree of conservancy among secreted salivary gland proteins from two geographically distant Phlebotomus duboscqi sand flies populations (Mali and Kenya). B.M.C. Genomics, 7, 226.

    Article  Google Scholar 

  36. Leland, H. V., Fend, S. V., Dudley, T. L., & Carter, J. L. (1989). Effects of copper on species composition of benthic insects in a Sierra Nevada, California, stream. Freshwater Biology, 21, 163–179.

    Article  CAS  Google Scholar 

  37. Li, Z., Lee, K., & Cobanli, S. E. (2007). Assessment of sediment toxicity during anaerobic biodegradation of vegetable oil using Microtox and Hyalella azteca bioassays. Environmental Toxicology, 22, 1–8.

    Article  Google Scholar 

  38. Li, Z., Wincele, D. E., & Wrenn, B. A. (2001). Anaerobic biodegradation of vegetable oil spills. Proceedings of the International Oil Spill Conference. Washington, DC: American Petroleum Institute.

    Google Scholar 

  39. Li, Z., & Wrenn, B. A. (2004). Effects of ferric hydroxide on the anaerobic biodegradation kinetics and toxicity of vegetable oil in freshwater sediments. Water Research, 38, 3859–3868.

    Article  CAS  Google Scholar 

  40. Li, Z., Wrenn, B. A., & Venosa, A. D. (2005). Anaerobic biodegradation of vegetable oil and its metabolic intermediates in oil-enriched freshwater sediments. Biodegradation, 16, 341–352.

    Article  CAS  Google Scholar 

  41. Lytle, D. A., & Peckarsky, B. A. (2001). Spatial and temporal impacts of a fuel spill on stream invertebrates. Freshwater Biology, 46, 693–704.

    Article  CAS  Google Scholar 

  42. Margalef, R. (1951). Diversidad de species en las comunidades natuales. Publicaciones del Instituto de Biologia Aplicada, 6, 59–72.

    Google Scholar 

  43. Marques, M. M., & Barbosa, F. (2001). Biological quality of waters from an impacted tropical watershed (middle Rio Doce basin, southeast Brazil), using benthic macroinvertebrate communities as an indicator. Hydrobiologia, 457, 69–76.

    Article  CAS  Google Scholar 

  44. Martinez, E. A., Moore, B. C., Schaumloffel, J., & Dasgupta, N. (2004). Teratogenic versus mutagenic abnormalities in chironomid larvae exposed to zinc and lead. Archives of Environmental Contamination and Toxicology, 47, 193–198.

    Article  CAS  Google Scholar 

  45. Marziali, L., Lencioni, V., & Rossaro, B. (2006). Chironomid species as indicators of freshwater habitat quality. Internationale Vereinigung fuer Theoretische und Angewandte Limnologie Verhandlungen, 29, 1553–1555.

    CAS  Google Scholar 

  46. Masojídek, J., Souček, P., Máchová, J., Frolík, J., Klem, J., & Malý, J. (2011). Detection of photosynthetic herbicides: algal growth inhibition test vs. electrochemical photosystem Π biosensor. Ecotoxicology and Environmental Safety, 74, 117–122.

    Article  Google Scholar 

  47. Mason, R. P., Morel, F. M. M., & Hemond, H. F. (1995). The role of microorganisms in elemental mercury formation in natural water. Environmental Science and Technology, 80, 775–787.

    CAS  Google Scholar 

  48. Merritt, R. W., & Cummins, K. W. (1996). An introduction to the aquatic insects of North America (3rd ed.). Iowa: Kendall/Hunt, Dubuque.

    Google Scholar 

  49. Mousavi, S. K., Primicerio, R., & Amundsen, P.-A. (2003). Diversity and structure of Chironomidae (Diptera) communities along a gradient of heavy metal contamination in a subarctic watercourse. Science of the Total Environment, 307, 93–110.

    Article  Google Scholar 

  50. MPCA. (2008). Macroinvertebrate community sampling protocol for depressional wetland monitoring sites. Biological monitoring program. Standard operating procedures. Minnesota: Minnesota Pollution and Control Agency.

    Google Scholar 

  51. Mudge, S. M. (1995). Deleterious effects from accidental spillage of vegetable oils. Spill Science and Technology Bulletin, 2, 187–191.

    Article  CAS  Google Scholar 

  52. Mudge, S. M. (1997). Can vegetable oils outlast minerals oils in the marine environment? Marine Pollution Bulletin, 34, 213.

    Article  CAS  Google Scholar 

  53. Mudge, S. M., Salgado, M., & East, J. (1993). Preliminary investigations into sunflower oil contamination following the wreck of the M.V. Kimya. Marine Pollution Bulletin, 26, 40–44.

    Article  CAS  Google Scholar 

  54. Musee, N., Oberholster, P. J., Sikhwivhilu, L., & Botha, A.-M. (2010). The effects of engineered nanoparticles on survival, reproduction, and behaviour of freshwater snail, Physa acuta (Draparnaud, 1805). Chemosphere, 81, 1196–1203.

    Article  CAS  Google Scholar 

  55. Nazarova, L. B., Pestryakova, L. A., Ushnitskaya, L. A., & Hubberten, H.-W. (2008). Chironomids (Diptera: Chironomidae) in lakes of central Yakutia and their indicative potential for paleoclimatic research. Contemporary Problems of Ecology, 1, 335–345.

    Article  Google Scholar 

  56. Norris, R. H., Lake, P., & Swain, R. (1982). Ecological effects of mine effluents on the South Esk River, Tasmania: benthic invertebrates. Australian Journal of Marine & Freshwater Research, 33, 789–809.

    Article  CAS  Google Scholar 

  57. Oberholster, P. J., Blaise, C., & Botha, A.-M. (2010). Phytobenthos and phytoplankton community changes upon exposure to a sunflower oil spill in a South African protected freshwater wetland. Ecotoxicology, 19, 1426–1439.

    Article  CAS  Google Scholar 

  58. Oberholster, P. J., Botha, A.-M., & Ashton, P. J. (2009). Appearance of new taxa: invertebrates, phytoplankton and bacteria in an alkaline, saline, meteorite crater lake, South Africa. Fundamental and Applied Limnology, 174, 271–282.

    Article  CAS  Google Scholar 

  59. Oberholster, P. J., Botha, A.-M., & Cloete, T. E. (2005). Using a battery of bioassays, benthic phytoplankton and the AUSRIVAS method to monitor long-term coal tar contaminated sediment in the Cachela Poudre River, Colorado. Water Research, 39, 4913–4924.

    Article  CAS  Google Scholar 

  60. Ocon, C. S., Capítulo, A. R., & Paggi, A. C. (2008). Evaluation of zoobenthic assemblages and recovery following petroleum spill in a coastal area of Río de la Plata estuarine system, South America. Environmental Pollution, 156, 82–89.

    Article  CAS  Google Scholar 

  61. O'Connel, T. R., & Campbell, R. S. (1953). The benthos of Black River and Clearwater Lake, Missouri. University of Missouri Studies, 26, 25–41.

    Google Scholar 

  62. Oliveira, B. M., & Keller, K. (2001). Addressing the challenges of freshwater spills. International Oil Spill Conference Proceedings, 1, 267–270.

    Article  Google Scholar 

  63. Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determination of accurate extinction coefficient and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochimica et Biophysica Acta, 975, 384–394.

    Article  CAS  Google Scholar 

  64. Poulton, B. C., Finger, S. E., & Humphry, S. A. (1997). Effects of a crude oil on the benthic invertebrate community in the Gasconade River, Missouri. Archives of Environmental Contamination and Toxicology, 33, 268–276.

    Article  CAS  Google Scholar 

  65. Rainio, J., & Niemela, J. (2003). Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiversity and Conservation, 12, 487–506.

    Article  Google Scholar 

  66. Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter—a review. Chemosphere, 55, 319–331.

    Article  CAS  Google Scholar 

  67. Rigger, D. (1997). Edible oils: are they really that different? Proceedings of the International Oil Spill Conference. Washington DC: American Petroleum Institute.

    Google Scholar 

  68. Rosenberg, D. M. (1992). Freshwater biomonitoring and Chironomidae. Netherlands Journal of Aquatic Ecology, 26, 101–122.

    Article  Google Scholar 

  69. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 26(379–423), 623–656.

    Article  Google Scholar 

  70. Slabbert, L. (2004). Methods for direct estimation of ecological effect potential (DEEEP) (pp. 1–100). WRC Pretoria, South Africa: Water Research Commission report 1313/01/04.

    Google Scholar 

  71. Takahashi, M. A., Higuti, J., Bagatini, Y. M., Zviejkovski, I. P., & Velho, L. F. M. (2008). Composition and biomass of larval chironomid (Insecta, Diptera) as potential indicator of trophic conditions in southern Brazil reservoirs. Acta Limnologica Brasiliensia, 20, 5–13.

    Google Scholar 

  72. Ten Brink, B. J. E., & Woudstra, J. H. (1991). Towards an effective and rational water management: the aquatic outlook project—integrating water management, monitoring and research. European Water Pollution Control, 1, 20–27.

    Google Scholar 

  73. Thorp, J. H., & Covich, A. P. (2001). Ecology and classification of North American freshwater invertebrates (2nd ed., pp. 1–867). San Diego: Academic.

    Book  Google Scholar 

  74. Tripole, S., Conzalez, P., Vallania, A., Garbagnati, M., & Mallea, M. (2006). Evaluation of impact of acid mine drainage on the chestry and the macrobenthos in the Carolina stream (San Luis-Argentina). Environitoring Monitoring Assessment, 114, 377–389.

    Article  CAS  Google Scholar 

  75. USDOC & NOAA. (1996). Injury assessment: Guidance document for natural resources damage assessment under the oil pollution act of 1990. Damage assessment and restoration program. Maryland: United States Department of Commerce, National Oceanic and Atmospheric Administration.

    Google Scholar 

  76. USEPA. (1997). Oil pollution prevention; non-transportation related onshore facilities. Federal Register. United States Environmental Protection Agency, 62, 54508–54543.

    Google Scholar 

  77. Van Dam, R. A., Camilleri, C., & Finlayson, C. M. (1998). The potential of rapid assessment techniques as early warning indicators of wetland degradation: a review. Environmental Toxicology and Water Quality, 13, 297–312.

    Article  Google Scholar 

  78. Vujević, M., Vidaković-Cifrek, Z., Tomić, M., & Regula, I. (2000). Calcium chloride and calcium bromide aqueous solutions of technical and analytical grade in Lemna bioassay. Chemosphere, 41, 1535–1542.

    Google Scholar 

  79. Warwick, R. M., & Clarke, K. R. (1993). Comparing the severity of disturbance: a meta-analysis of marine macrobenthic community data. Marine Ecology Progress Series, 92, 221–231.

    Article  Google Scholar 

  80. Watanabe, N. C., Harada, S., & Komai, Y. (2000). Long-term recovery from mine drainage disturbance of a macroinvertebrate community in the Ichi-kawa River, Japan. Hydrobiologia, 429, 171–180.

    Article  Google Scholar 

  81. Wincele, D. E., Wrenn, B. A., & Venosa, A. D. (2004). Sedimentation of oil mineral aggregates for remediation of vegetable oil spills. Journal of Environmental Engineering, 130, 50–58.

    Article  CAS  Google Scholar 

  82. Wright, J. F. (1995). Development and use of a system for predicting the macro-invertebrate fauna in flowing waters. Australian Journal of Ecology, 20, 181–197.

    Article  Google Scholar 

  83. Wu, J., Fu, C., Liang, Y., & Chen, J. (2004). Distribution of the meiofaunal community in a eutrophic shallow lake of China. Archives of Hydrobiology, 159, 555–575.

    Article  Google Scholar 

  84. Yoshimura, C., Tockner, K., Omura, T., & Moog, O. (2006). Species diversity and functional assessment of macroinvertebrate communities in Austrian rivers. Limnology, 7, 63–74.

    Article  CAS  Google Scholar 

  85. Zoun, P. E. F., Baars, A. J., & Boshuizen, R. S. (1991). A case of seabird mortality in the Netherlands caused by spillage of nonylphenol and vegetable oils, winter 1988/1989. Sula, 5, 101–103.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Research Foundation and the University of Pretoria for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. J. Oberholster.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Selala, M.C., Botha, AM., de Klerk, A.R. et al. Effects of Vegetable Oil Pollution on Aquatic Macroinvertebrate Assemblage in a Freshwater Wetland and Its Use as a Remediation Tool. Water Air Soil Pollut 224, 1650 (2013). https://doi.org/10.1007/s11270-013-1650-x

Download citation

Keywords

  • Freshwater wetland
  • Sunflower oil spill
  • Static battery of bioassays
  • Chironomidae
  • Psychodidae