Skip to main content
Log in

Photocatalytic Degradation of Ni(II)-Cyano and Co(III)-Cyano Complexes

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cyanide and metal–cyanide complexes are common constituents of effluents of mining, petroleum refining, and coal gasification. This paper presents the photocatalytic degradation of free cyanide, Ni(II)-cyanide (Ni(CN)4 2−), and Co(III)-cyanide (Co(CN)6 3−) complexes in aqueous TiO2 suspensions. The effect of pH (9.5–12.0), TiO2 loading (0.1–2.0 g/l), and the airflow rate (0.5–2.0 l/min) in a photoreactor on the degradation of the cyanide complexes was investigated. Free cyanide fully converted to cyanate (NCO) under alkaline conditions. The maximum removal of the Ni(CN)4 2− ion in 180 min was found to be 90 %; forming CN and NCO ions as the major and minor products, respectively. Comparatively, the Co(CN)6 3− ion could be degraded only up to 30 % in 180 min. The schemes of the photocatalytic oxidation of cyanides are briefly described. The possible causes for differences in degradation of Ni(CN)4 2− and Co(CN)6 3− are also discussed. Optimum conditions for efficient removal of Ni(CN)4 2− and Co(CN)6 3− ions separately and in mixtures are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acheampong, M. A., Meulepas, R. J. W., & Lens, P. N. L. (2010). Removal of heavy metals and cyanide from gold mine wastewater. Journal of Chemical Technology and Biotechnology, 85, 590–613.

    Article  CAS  Google Scholar 

  • Adamson, A. W., Chiang, A., & Zinato, E. (1969). Photochemistry of aqueous cobalt(III) cyano complexes. Journal of the American Chemical Society, 91, 5467–5475.

    Article  CAS  Google Scholar 

  • Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., & Hashib, M. A. (2011). Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water, Air, and Soil Pollution, 215, 3–29.

    Article  CAS  Google Scholar 

  • Beach, M. W., & Margerum, D. W. (1990). Kinetics of oxidation of tetracyanonickelate(II) by chlorine monoxide, chlorine, and hypochlorous acid and kinetics of chlorine monoxide formation. Inorganic Chemistry, 29, 1225–1232.

    Article  CAS  Google Scholar 

  • Buxton, G. V., Wood, N. D., & Dyster, S. (1988). Ionisation constants of.OH and HO2. in aqueous solution up to 200 °C. A pulse radiolysis study. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 84, 1113–1121.

    Article  CAS  Google Scholar 

  • Dabrowski, B., Zaleska, A., Janczarek, M., Hupka, J., & Miller, J. D. (2002). Photo-oxidation of dissolved cyanide using TiO2 catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 151, 201–205.

    Article  CAS  Google Scholar 

  • Filip, J., Yngard, R. A., Siskova, K., Marusak, Z., Ettler, V., Sajdl, P., et al. (2011). Mechanisms and efficiency of the simultaneous removal of metals and cyanides by using ferrate(VI): crucial roles of nanocrystalline iron(III) oxyhydroxides and metal carbonates. Chemistry - A European Journal, 17, 10097–10105.

    Article  CAS  Google Scholar 

  • Frank, S. N., & Bard, A. J. (1977). Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at TiO2 powder. Journal of the American Chemical Society, 99, 303–304.

    Article  CAS  Google Scholar 

  • Gerritsen, C. M., & Margerum, D. W. (1990). Non-metal kinetics: hypochlorite and hypochlorous acid reaction with cyanide. Inorganic Chemistry, 29, 2757–2762.

    Article  CAS  Google Scholar 

  • Harraz, F. A., Abdel-Salam, O. E., Mostafa, A. A., Mohamed, R. M., & Hanafy, M. (2013). Rapid synthesis of titania-silica nanoparticles photocatalyst by a modified sol–gel method for cyanide degradation and heavy metals removal. Journal of Alloys and Compounds, 551, 1–7.

    Article  CAS  Google Scholar 

  • Huie, R. E., Shoute, L. C. T., & Neta, P. (1991). Temperature dependence of the rate constants for reactions of the carbonate radical with organic and inorganic reductants. International Journal of Chemical Kinetics, 23, 541–552.

    Article  CAS  Google Scholar 

  • Johnson, C. A., Grimes, D. J., Leinz, R. W., & Rye, R. O. (2008). Cyanide speciation at four gold leach operations undergoing remediation. Environmental Science and Technology, 42, 1038–1044.

    Article  CAS  Google Scholar 

  • Lito, P. F., Aniceto, J. P. S., & Silva, C. M. (2012). Removal of anionic pollutants from waters and wastewaters and materials perspective for their selective sorption. Water, Air, and Soil Pollution, 223, 6133–6155.

    Article  CAS  Google Scholar 

  • Little, E. E., Calfee, R. D., Theodorakos, P., Brown, Z. A., & Johnson, C. A. (2007). Toxicity of cobalt-complexed cyanide to Oncorhynchus mykiss, Daphnia magna, and Ceriodaphnia dubia: potentiation by ultraviolet radiation and attenuation by dissolved organic carbon and adaptive UV tolerance. Environmental Science and Pollution Research, 14, 333–337.

    Article  CAS  Google Scholar 

  • López-Muñoz, M., Aguado, J., van Grieken, R., & Marugán, J. (2009). Simultaneous photocatalytic reduction of silver and oxidation of cyanide from dicyanoargentate solutions. Applied Catalysis B: Environmental, 86, 53–62.

    Article  Google Scholar 

  • Mudder, T. I., Botz, M. M., & Akçil, A. (2008). Cyanide and society: a critical review. Madencilik, 47, 27–42.

    CAS  Google Scholar 

  • Mulazzani, Q. G., Ward, M. D., Semerano, G., Emmi, S. S., & Giordani, P. (1974). Gamma and pulse radiolysis of tetracyanonickelate(II) anion in aqueous solution. International Journal for Radiation Physics and Chemistry, 6, 187–201.

    Article  CAS  Google Scholar 

  • Muñoz, F., Schuchmann, M. N., Olbrich, G., & Von Sonntag, C. (2000). Common intermediates in the OH-radical-induced oxidation of cyanide and formamide. Journal of the Chemical Society. Perkin Transactions, 2, 655–659.

    Google Scholar 

  • Ohno, T., Sarukawa, K., Tokieda, K., & Matsumura, M. (2001). Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. Journal of Catalysis, 203, 82–86.

    Article  CAS  Google Scholar 

  • Osathaphan, K., Boonpitak, T., Laopirojana, T., & Sharma, V. K. (2008a). Removal of cyanide and zinc–cyanide complex by an ion-exchange process. Water, Air, and Soil Pollution, 194, 179–183.

    Article  CAS  Google Scholar 

  • Osathaphan, K., Chucherdwatanasak, B., Rachdawong, P., & Sharma, V. K. (2008b). Photocatalytic oxidation of cyanide in aqueous titanium dioxide suspensions: effect of ethylenediaminetetraacetate. Solar Energy, 82, 1031–1036.

    Article  CAS  Google Scholar 

  • Osathaphan, K., Chucherdwatanasak, B., Rachdawong, P., & Sharma, V. K. (2008c). Effect of ethylenediaminetetraacetate on the oxidation of cyanide in an electrochemical process. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances & Environmental Engineering, 43, 295–299.

    Article  CAS  Google Scholar 

  • Osathaphan, K., Tiyanont, P., Yngard, R. A., & Sharma, V. K. (2011). Removal of cyanide in Ni(II)-cyanide, Ni(II)-cyanide-EDTA, and electroplating rinse wastewater by Ferrate(VI). Water, Air, and Soil Pollution, 219, 527–534.

    Article  CAS  Google Scholar 

  • Peral, J., & Domenech, X. (1992). Photocatalytic cyanide oxidation from aqueous copper cyanide solutions over TiO2 and ZnO. Journal of Chemical Technology and Biotechnology, 53, 93–96.

    CAS  Google Scholar 

  • Pollema, C. H., Hendrix, J. L., Milosavljević, E. B., Solujić, L., & Nelson, J. H. (1992). Photocatalytic oxidation of cyanide to nitrate at TiO2 particles. Journal of Photochemistry and Photobiology, A: Chemistry, 66, 235–244.

    Article  CAS  Google Scholar 

  • Sharma, V. K., Yngard, R. A., Cabelli, D. E., & Clayton Baum, J. (2008). Ferrate(VI) and ferrate(V) oxidation of cyanide, thiocyanate, and copper(I) cyanide. Radiation Physics and Chemistry, 77, 761–767.

    Article  CAS  Google Scholar 

  • Shirzad Siboni, M., Samarghandi, M. R., Yang, J., & Lee, S. (2011). Photocatalytic removal of cyanide with illuminated TiO2. Water Science and Technology, 64, 1383–1387.

    Article  Google Scholar 

  • Smoliński, A., Stańczyk, K., Kapusta, K., & Howaniec, N. (2012). Chemometric study of the ex situ underground coal gasification wastewater experimental data. Water, Air, and Soil Pollution, 223, 5745–5758.

    Article  Google Scholar 

  • Van Grieken, R., Aguado, J., López-Muñoz, M., & Marugán, J. (2005). Photocatalytic degradation of iron-cyanocomplexes by TiO2 based catalysts. Applied Catalysis B: Environmental, 55, 201–211.

    Article  Google Scholar 

  • Yngard, R. A., Sharma, V. K., Filip, J., & Zboril, R. (2008). Ferrate(VI) oxidation of weak-acid dissociable cyanides. Environmental Science & Technology, 42, 3005–3010.

    Article  CAS  Google Scholar 

  • Young, C. A. (2001a). Cyanide: Just the Facts. 97–113.

  • Young, C. A. (2001b). Remediation technologies for the management of aqueous cyanide species. 175–194.

  • Zagury, G. J., Oudjehani, K., & Deschênes, L. (2004). Characterization and availability of cyanide in solid mine tailings from gold extraction plants. Science of the Total Environment, 320, 211–224.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Graduate School, Chulalongkorn University. V.K.S. would like to thank the Center of Ferrate Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virender K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osathaphan, K., Ruengruehan, K., Yngard, R.A. et al. Photocatalytic Degradation of Ni(II)-Cyano and Co(III)-Cyano Complexes. Water Air Soil Pollut 224, 1647 (2013). https://doi.org/10.1007/s11270-013-1647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1647-5

Keywords

Navigation