Water, Air, & Soil Pollution

, 224:1599

Valuation of Unmodified Rice Husk Waste as an Eco-Friendly Sorbent to Remove Mercury: a Study Using Environmental Realistic Concentrations

  • Luciana S. Rocha
  • Cláudia B. Lopes
  • J. A. Borges
  • A. C. Duarte
  • E. Pereira


The present work explores the sorption capacity of an inexpensive and highly available agricultural waste, rice husk, to remove mercury using realistic concentrations of this metal. The efficiency of the process was evaluated for two initial Hg(II) concentrations, one representing the maximum value for Hg discharges from industrial sectors (0.05 mg L−1), and the other ten times higher. A very small amount of rice husk (0.25 and 0.50 g L−1) was able to reduce the Hg(II) levels in more than 80 % for an initial concentration of 0.05 mg L−1 and in more than 90 % for 0.50 mg L−1, corresponding to residual concentrations of Hg(II) of 0.048 and 0.009 mg L−1, respectively. The biosorvent was reused in further cleaning treatments, maintaining the efficiency and high performance. The sorption kinetics of the Hg–rice husk system is well fitted by the Elovich model and the diffusion models suggested that, depending on the initial Hg(II) concentrations, the sorption process can be controlled by intraparticle diffusion or by both film and intraparticle diffusion. The equilibrium data are well described by the linear isotherm and the distribution coefficient found was 36.1 L g−1.


Mercury Rice husk Waste Remediation Contaminated waters 


  1. Al-Degs, Y. S., El-Barghouthi, M. I., Issa, A. A., Khraisheh, M. A., & Walker, G. M. (2006). Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Research, 40, 2645–2658.CrossRefGoogle Scholar
  2. Ahmaruzzaman, M., & Gupta, V. K. (2011). Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Industrial and Engineering Chemistry Research, 50, 13589–136.CrossRefGoogle Scholar
  3. Banerjee, S. S., Joshi, M. V., & Jayaram, R. V. (2004). Removal of Cr(VI) and Hg(II) from aqueous solutions using fly ash and impregnated fly ash. Separation Scientific Technology, 39(7), 1611–1629.CrossRefGoogle Scholar
  4. Bayramoğlu, G., & Arica, M. Y. (2008). Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets. Chemical Engineering Journal, 143, 133–140.CrossRefGoogle Scholar
  5. Chuah, T. G., Jumasiah, A., Azni, I., Katayon, S., & Choong, S. Y. T. (2005). Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination, 175, 305–316.CrossRefGoogle Scholar
  6. Coelho, J. P., Nunes, M., Dolbeth, M., Pereira, M. E., Duarte, A. C., & Pardal, M. A. (2008). The role of two sediment dwelling invertebrates on the mercury transfer from sediments to the estuarine trophic web. Estuarine Coastal and Shelf Science, 78(3), 516–523.CrossRefGoogle Scholar
  7. Council Directive 84/156/EEC on limit values and quality objectives for mercury discharges by sectors other than the chlor-alkali electrolysis industry.Google Scholar
  8. Council Directive 98/83/EC on the quality of water intended for human consumption. Official Journal, 330, 0032–0054.Google Scholar
  9. El-Khaiary, M. I., & Malash, G. F. (2011). Common data analysis errors in batch adsorption studies. Hydrometallurgy, 105, 314–320.CrossRefGoogle Scholar
  10. El-Said, A. G. (2010). Biosorption of Pb(II) ions from aqueous solutions onto rice husk and its ash. Journal American Science, 6(10), 143–150.Google Scholar
  11. El-Said, A. G., Badawy, N. A., & Garamon, S. E. (2010). Adsorption of cadmium (II) and mercury (II) onto natural adsorbent rice husk ash (RHA) from aqueous solutions: study in single and binary system. Journal American Science, 6(12), 400–409.Google Scholar
  12. El-Shafey, E. I. (2010). Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk. Journal of Hazardous Materials, 175, 319–327.CrossRefGoogle Scholar
  13. EU (2008). Directive 2008/105/EC of the European Parliament and of the Council of the European Union, on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of European Parliament and of the Council. Official Journal of the European Communities 348/84.Google Scholar
  14. Feng, Q., Lin, Q., Gong, F., Sugita, S., & Shoya, M. (2004). Adsorption of lead and mercury by rice husk ash. Journal of Colloid and Interface Science, 278, 1–8.CrossRefGoogle Scholar
  15. Ghodbane, I., & Hamdaoui, O. (2008). Removal of mercury(II) from aqueous media using eucalyptus bark: kinetic and equilibrium studies. Journal of Hazardous Materials, 160, 301–309.CrossRefGoogle Scholar
  16. Green-Ruiz, C. (2006). Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresource Technology, 97, 1907–1911.CrossRefGoogle Scholar
  17. Hameed, B. H., & El-Khaiary, M. I. (2008). Malachite green adsorption by rattan sawdust: isotherm, kinetic and mechanism modeling. Journal of Hazardous Materials, 159, 574–579.CrossRefGoogle Scholar
  18. Ho, Y. S., Ng, J. C. Y., & McKay, G. (2000). Kinetics of pollutant sorption by biosorbents: review. Separation and Purification Methods, 29(2), 189–232.CrossRefGoogle Scholar
  19. Ho, Y. S., Porter, J. F., & Mckay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air and Soil Pollution, 141, 1–33.CrossRefGoogle Scholar
  20. Ho, Y.-S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, B136, 681–689.CrossRefGoogle Scholar
  21. Jeon, C. (2011). Removal of copper ion using rice hulls. Journal of Industrial and Engineering Chemistry, 17, 517–520.CrossRefGoogle Scholar
  22. Juwarkar, A. A., Singh, S. K., & Mudhoo, A. (2010). A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Biotechnology, 9, 215–288.CrossRefGoogle Scholar
  23. Karunasagar, D., Krishna, M. V. B., Rao, S. V., & Arunachalam, J. (2005). Removal and preconcentration of inorganic and methyl mercury from aqueous media using a sorbent prepared from the plant Coriandrum sativum. Journal of Hazardous Materials, B118, 133–139.CrossRefGoogle Scholar
  24. Khalid, N., Ahmad, S., Kiani, S. N., & Ahmed, J. (1999). Removal of mercury from aqueous solutions by adsorption to rice husks. Separation Science and Technology, 34(16), 3139–3153.CrossRefGoogle Scholar
  25. Krishnani, K. K., Meng, X., Christodoulatos, C., & Boddu, V. M. (2008). Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of Hazardous Materials, 153, 1222–1234.CrossRefGoogle Scholar
  26. Kumar, U., & Bandyopadhyay, M. (2006). Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresource Technology, 97, 104–109.CrossRefGoogle Scholar
  27. Liou, T. H., & Wu, S. J. (2009). Characteristics of microporous/mesoporous carbons prepared from rice husk under base- and acid-treated conditions. Journal of Hazardous Materials, 171, 693–703.CrossRefGoogle Scholar
  28. Lopes, C. B., Coimbra, J., Otero, M., Pereira, E., & Duarte, A. C. (2008). Uptake of Hg2+ from aqueous solutions by microporous titano- and zircono-silicates. Quim. Nova, 31(2), 321–325.CrossRefGoogle Scholar
  29. Lopes, C. B., Otero, M., Lin, Z., Silva, C. M., Rocha, J., Pereira, E., & Duarte, A. C. (2009). Removal of Hg2+ ions from aqueous solution by ETS-4 microporous titanosilicate—kinetic and equilibrium studies. Chemical Engineering Journal, 151, 247–254.CrossRefGoogle Scholar
  30. Malash, G. F., & El-Khaiary, M. I. (2010). Piecewise linear regression: a statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models. Chemical Engineering Journal, 163, 256–263.CrossRefGoogle Scholar
  31. Manchón-Vizuete, E., Macías-García, A., Gisbert, A. N., Fernández-González, C., & Gómez-Serrano, V. (2005). Adsorption of mercury by carbonaceous adsorbents prepared from rubber of tyre wastes. Journal of Hazardous Materials, B119, 231–238.CrossRefGoogle Scholar
  32. Meena, A. K., Mishra, G. K., Kumar, S., & Rajagopal, C. (2004). Low-cost adsorbents for the removal of mercury (II) from aqueous solution—a comparative study. Defence Science Journal, 54(4), 537–548.Google Scholar
  33. Ofomaja, A. E. (2010). Intraparticle diffusion process for lead(II) biosorption onto mansonia wood sawdust. Bioresource Technology, 101, 5868–5876.CrossRefGoogle Scholar
  34. Park, B. D., Wi, S. G., Lee, K. H., Singh, A. P., & Yoon, T. H. (2003). Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques. Biomass Bioenergy, 25, 319–327.CrossRefGoogle Scholar
  35. Rocha, C. G., Zaia, D. A. M., Alfaya, R. V. S., & Alfaya, A. A. S. (2009). Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents. Journal of Hazardous Materials, 166, 383–388.CrossRefGoogle Scholar
  36. Shaban, W., Rmalli, A., Dahmani, A. A., Abuein, M. M., & Gleza, A. A. (2008). Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.). Journal of Hazardous Materials, 152, 955–959.CrossRefGoogle Scholar
  37. Shahryari, Z., Goharrizi, A. S., & Azadi, M. (2010). Experimental study of methylene blue adsorption from aqueous solutions onto carbon nano tubes. International Journal of Water Resource. Environmental Engineering, 2(2), 16–28.Google Scholar
  38. Tarley, C. R. T., & Arruda, M. A. Z. (2004). Biosorption of heavy metals using rice milling by-products. Characterisation and application for removal of metals from aqueous effluents. Chemosphere, 54, 987–995.CrossRefGoogle Scholar
  39. Tiwari, D. P., Singh, D. K., & Saksena, D. N. (1995). Hg(II) adsorption from aqueous solutions using rice-husk ash. Journal of Environmental Engineering—ASCE, 121(6), 479–481.CrossRefGoogle Scholar
  40. Voudrias, E., Fytianos, K., & Bozani, E. (2002). Sorption‒desorption isotherms of dyes from aqueous solutions and wastewaters with different sorbent materials. Global Nest Journal, 4(1), 75–83.Google Scholar
  41. Wong, K. K., Lee, C. K., Low, K. S., & Haron, M. J. (2003). Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere, 50, 23–28.CrossRefGoogle Scholar
  42. Zolgharnein, J., & Shahmoradi, A. (2010). Characterization of sorption isotherms, kinetic models, and multivariate approach for optimization of Hg(II) adsorption onto Fraxinus tree leaves. Journal of Chemical & Engineering Data, 55, 5040–5049.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Luciana S. Rocha
    • 1
  • Cláudia B. Lopes
    • 1
  • J. A. Borges
    • 2
  • A. C. Duarte
    • 1
  • E. Pereira
    • 1
  1. 1.Department of Chemistry/CESAMUniversity of AveiroAveiroPortugal
  2. 2.Álvaro Alves Borges, LdaAlto Brenha-BrenhaFigueira da FozPortugal

Personalised recommendations