Skip to main content

Advertisement

Log in

First Report of Microcystins and Anatoxin-a Co-occurrence in San Roque Reservoir (Córdoba, Argentina)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the presence of microcystin-LR, microcystin-RR, microcystin-YR, and the neurotoxin anatoxin-a in water samples collected monthly during 1 year in San Roque reservoir (Córdoba, Argentina) to identify the environmental factors that could promote the presence of these cyanotoxins. The HPLC-UV and MS/MS analysis showed the presence of microcystin in most of the sampling times, even when Cyanobacteria were subdominant. Microcystin concentrations varied from not detectable levels to 119.0 μg L−1. Thus, they frequently surpassed the guidelines suggested by WHO for drinking water (1 μg L−1) and recreational exposure (20 μg L−1). To the extent of our knowledge, this is the first report of anatoxin-a in freshwaters in South America. Anatoxin-a concentrations varied from not detectable levels to 6.6 ng L−1, a thousand times below the provisional guideline adopted by New Zealand for drinking water. Microcystin showed significant correlation with Microcystis and Pseudoanabaena while anatoxin-a correlated with Oscillatoria and Anabaena counts. Linear discriminant analysis showed that higher pH levels and more variable chlorophyll-a concentrations were measured in San Roque reservoir when cyanotoxins were present. Lower inorganic nitrogen concentrations were observed in autumn, when the prevalence of Anabaena became significant in Cyanobacteria composition and highest anatoxin-a levels were measured. The observed dynamic of phytoplankton going together with the cyanotoxins occurrence could be explained by the hypothesis of cyanotoxins acting as allelopathic compounds. The microcystin levels measured plus the presence of anatoxin-a show the need of stronger management efforts to preserve human and wildlife health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amé, M. V., Díaz, M. P., & Wunderlin, D. A. (2003). Occurrence of toxic cyanobacterial blooms in San Roque Reservoirs (Córdoba, Argentina): a field and chemometric study. Environmental Toxicology, 18, 192–201.

    Article  Google Scholar 

  • Amé, M. V., Galanti, L. N., Menone, M. L., Gerpe, M. S., Moreno, V. J., & Wunderlin, D. A. (2010). Microcystin-LR, -RR, -YR and -LA in water samples and fishes from a shallow lake in Argentina. Harmful Algae, 9, 66–73.

    Article  Google Scholar 

  • American Public Health Association, [APHA], American Water Works Association [AWWA], Water Environment Federation [WEF] (2005) Standard methods for the examination of water and wastewater. In: A. D. Eaton, L. S. Clesceri, E. W. Rice, A. H. Greenberg (eds). Baltimore.

  • Araoz, R., Nghiem, H. O., Rippka, R., Palibroda, N., de Marsac, N. T., & Herdman, M. (2005). Neurotoxins in axenic Oscillatorian cyanobacteria: coexistence of anatoxin-a and homoanatoxin-a determined by ligand binding assay and GC/MS. Microbiology, 151, 1263–1273.

    Article  CAS  Google Scholar 

  • Ballot, A., Krienitz, L., Kotut, K., Wiegand, C., & Pflugmacher, S. (2005). Cyanobacteria and cyanobacterial toxins in the alkaline crater lakes Sonachi and Simbi, Kenya. Harmful Algae, 4, 139–150.

    Article  CAS  Google Scholar 

  • Barco, M., Lawton, L. A., Rivera, J., & Caixach, J. (2005). Optimization of intracellular microcystin extraction for their subsequent analysis by high-performance liquid chromatography. Journal of Chromatography. A, 1074, 23–30.

    Article  CAS  Google Scholar 

  • Becker, V., Ihara, P., Yunes, J. S., & Huszar, V. L. M. (2010). Occurrence of anatoxin-a(s) during a bloom of Anabaena crassa in a water-supply reservoir in southern Brazil. Journal of Applied Phycology, 22(3), 235–241.

    Article  CAS  Google Scholar 

  • Cazenave, J., Wunderlin, D. A., Bistoni, M. A., Amé, M. V., Krause, E., Pflugmacher, S., et al. (2005). Uptake, tissue distribution and accumulation of microcystin-RR in Corydoras Paleatus, Jenynsia multidentata and Odontesthes bonariensis, a field and laboratory study. Aquatic Toxicology, 75, 178–190.

    Article  CAS  Google Scholar 

  • Chapman, D. (1992). The selection of water quality variables. In: Chapman D, (Ed.), Water Quality Assessments. A guide to the use of biota, sediments and water in the environmental monitoring. London: Chapman & Hall

  • Chorus, I., & Bartran, J. (1999). Toxic Cianobacteria in water. A guide to their public health consequences, monitoring and management. Geneva: World Health Organization.

    Book  Google Scholar 

  • Chorus, I., Falconer, I. R., Salas, H. J., & Bartran, J. (2000). Health risks caused by freswater cyanobacteria in recreational waters. Journal of Toxicology and Environmental Health, 3, 323–347.

    Article  CAS  Google Scholar 

  • Chorus, I. (2001). Cyanotoxins occurrence in freshwaters—a summary of survey results from different countries. In I. Chorus (Ed.), Cyanotoxins (pp. 75–82). Berlin: Springer.

    Chapter  Google Scholar 

  • Dagnino, D., & Schripsema, J. (2005). 1H NMR quantification in very dilute toxin solutions: application to anatoxin-a analysis. Toxicon, 46, 236–240.

    Article  CAS  Google Scholar 

  • Davis, T. W., Berry, D. L., Boyer, G. L., & Gobler, C. J. (2009). The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8, 715–725.

    Article  CAS  Google Scholar 

  • Del Campo, F. F., & Ouahid, Y. (2010). Identification of microcystins from three collection strains of Microcystis aeruginosa. Environmental Pollution, 158, 2906–2914.

    Article  Google Scholar 

  • Devlin, J. P., Edwards, O. E., Gorham, P. R., Hunter, M. R., Pike, R. K., & Stavric, B. (1977). Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NCR-44. Canadian Journal of Chemistry, 55, 1367–1371.

    Article  CAS  Google Scholar 

  • Dörr, F. A., Pinto, E., Soares, R. M., & Feliciano de Olivera e Azevedo, S. M. (2010). Microcystins in South American aquatic ecosystems: occurrence, toxicity and toxicological assay. Toxicon, 56, 1247–1256.

    Article  Google Scholar 

  • dos Anjos, F. M., Bittencourt-Oliveira, M. C., Zajaca, M. P., Hillerd, S., Christian, B., Erlerd, K., et al. (2006). Detection of harmful cyanobacteria and their toxins by both PCR amplification and LC-MS during a bloom event. Toxicon, 48, 239–245.

    Article  Google Scholar 

  • El-Shehawy, R., Gorokhova, E., Fernández-Piñas, F., & del Campo, F. F. (2012). Global warming and hepatotoxin production by cyanobacteria: what can we learn from experiments? Water Research, 46, 1420–1429.

    Article  CAS  Google Scholar 

  • Ferrão-Filho, A. S., Soares, M. C., Magalhães, V. F., & Azevedo, S. M. F. O. (2009). Biomonitoring of cyanotoxins in two tropical reservoirs by cladoceran toxicity bioassays. Ecotoxicology and Environmental Safety, 72, 479–489.

    Article  Google Scholar 

  • Fromme, H., Köhler, A., Krause, R., & Führling, D. (2000). Occurrence of cyanobacterial toxins—microcystins and anatoxin-a—in Berlin water bodies with implications to human health and regulations. Environmetal Toxicology, 15, 120–130.

    Article  CAS  Google Scholar 

  • Gugger, M., Lenoir, S., Berger, C., Ledreux, A., Druart, J.-C., Humbert, J.-F., et al. (2005). First report in a river in France of the benthic cyanobacterium Phormidium favosum producing anatoxina associated with dog neurotoxicosis. Toxicon, 45, 919–928.

    Article  CAS  Google Scholar 

  • Harada, K.-I., Suzuki, M., Dahlem, A. M., Beasley, V. R., Carmichael, W. W., & Rinehart, K. L., Jr. (1988). Improved method for purification of toxic peptides produced by cyanobacteria. Toxicon, 26, 433–439.

    Article  CAS  Google Scholar 

  • Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate statistical analysis. Englewood Cliffs: Prentice–Hall International.

    Google Scholar 

  • Kaebernick, M., & Neilan, B. A. (2001). Ecological and molecular investigations of cyanotoxin production. FEMS Microbiology Ecology, 35, 1–9.

    Article  CAS  Google Scholar 

  • Kardinaal, W. E. A., & Visser, P. M. (2005). Dynamics of cyanobacterial toxins. In J. Huisman, H. C. P. Matthijs, & P. M. Visser (Eds.), Harmful Cyanobacteria. Aquatic ecology series (pp. 41–63). Berlin: Springer.

    Google Scholar 

  • Lagos, N., Onodera, H., Zagatto, P. A., Andrinolo, D., Azevedo, S. M. F. Q., & Oshima, Y. (1999). The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon, 37, 1359–1373.

    Article  CAS  Google Scholar 

  • Marsalek, B., Blaha, L., & Babica, P. (2003). Analyses of microcystins in the biomass of Pseudanabaena linmnetica collected in Znojmo reservoir. Czech Phycology, 3, 195–197.

    Google Scholar 

  • Ministry for the Environment and Ministry of Health [MEMH). (2009). New Zealand guidelines for Cyanobacteria in recreational fresh waters—interim guidelines. New Zeland: Ministry for the Environment.

    Google Scholar 

  • Molica, R. J. R., Oliveira, E. J. A., Carvalho, P. V. V. C., Costa, A. N. S. F., Cunha, M. C. C., Melo, G. L., et al. (2005). Occurrence of saxitoxins and an anatoxin-a(s)-like anticholinesterase in a Brazilian drinking water supply. Harmful Algae, 4, 743–753.

    Article  CAS  Google Scholar 

  • Moollan, R. W., Rae, B., & Verbeek, A. (1996). Some comments on the determination of microcystin toxins in waters by high-performance liquid chromatography. Analyst, 121(2), 233–238.

    Article  CAS  Google Scholar 

  • Monferrán, M. V., Galanti, L. N., Bonansea, R. I., Amé, M. V., & Wunderlin, D. A. (2011). Integrated survey of water pollution in the Suquía River basin (Córdoba, Argentina). Journal of Environmental Monitoring, 13, 398–409.

    Article  Google Scholar 

  • Monserrat, J. M., Yunes, J. S., & Biachini, A. (2001). Effects of Anabaena spiroides (Cyanobacteria) aqueous extracts on the acetylcholinesterase activity of aquatic species. Environmental Toxicology and Chemistry, 20(6), 1228–1235.

    CAS  Google Scholar 

  • O’Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334.

    Article  Google Scholar 

  • Orr, P. T., & Jones, G. J. (1998). Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnology and Oceanography, 43, 1604–1614.

    Article  CAS  Google Scholar 

  • Osswald, J., Rellán, S., Carvalho, A. P., Gago, A., & Vasconcelos, V. (2007). Acute effects of an anatoxin-a producing cyanobacterium on juvenile fish Cyprinus carpio L. Toxicon, 49, 693–698.

    Article  CAS  Google Scholar 

  • Oudra, B., Loudiki, M., Sbiyyaa, B., Martins, R., Vasconcelos, V., & Namikoshi, N. (2001). Isolation, characterization and quantification of microcystins (heptapeptides hepatotoxins) in Microcystis aeruginosa dominated bloom of Lalla Takerkoust lake-reservoir (Morocco). Toxicon, 39, 1375–1381.

    Article  CAS  Google Scholar 

  • Paerl, H. W., & Huisman, J. (2008). Blooms like it hot. Science, 320, 57–58.

    Article  CAS  Google Scholar 

  • Pizzolón, L., Tracanna, B., Silva, H., Prósperi, C., Fabricius, A. L. M., Emiliani, M. O. G., et al. (1997). Inventario de ambientes dulceacuícolas de la Argentina con riesgo de envenenamiento por cyanobacterias). Ingeniería Sanitaria Ambiental, 33, 26–34.

    Google Scholar 

  • Rinta-Kanto, J. M., Konopka, E. A., DeBruyn, J. M., Bourbonniere, R. A., Boyer, G. L., & Wilhelm, S. W. (2009). Lake Erie Microcystis: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae, 8, 655–673.

    Google Scholar 

  • Ruibal Conti, A. L., Guerrero, J. M., & Regueira, J. M. (2005). Levels of microcystins in two Argentinean reservoirs used for water supply and recreation: differences in the implementation of safe levels. Environmental Toxicoloxy, 20, 263–269.

    Article  Google Scholar 

  • Ryding, S., & Rast, W. (1992). El control de la eutrofización en lagos y pantanos. Madrid: Ediciones Pirámide.

    Google Scholar 

  • Scarafia, M. E., Agnese, A. M., & Cabrera, J. L. (1995). Microcystis aeruginosa: behaviour and toxic Features in San Roque Dam (Argentina). Natural Toxins, 3, 75–77.

    Article  CAS  Google Scholar 

  • Sedmak, B., & Kosi, G. (1998). The role of microcystins in heavy cyanobacterial bloom formation. Journal of Plankton Research, 20, 691–708.

    Article  CAS  Google Scholar 

  • Sivonen, K., & Jones, G. (1999). Cyanobacterial toxins. In I. Chorus & J. Bartram (Eds.), Toxic Cyanobacteria in water: a guide to their public health consequences, monitoring and management (pp. 41–111). London: E & FN Spon.

    Google Scholar 

  • Svrcek, C., & Smith, D. W. (2004). Cyanobacteria toxins and the current state of knowledge on water treatment options: a review. Journal of Environmental Engineering and Science, 3(3), 155–185.

    Article  CAS  Google Scholar 

  • Vandeginste, B. G. M., Massart, D. L., Buydens, L. M. C., De Jong, S., Lewi, P. J., & Smeyers-Verbeke, J. (1998). In B. G. M. Vandeginste & S. C. Rutan (Eds.), Handbook of chemometrics and qualimetrics: Part B. Amsterdan: Elsevier.

    Google Scholar 

  • World Health Organization [WHO]. (2003). Algae and cyanobacteria in fresh water. In Guidelines for Safe Recreational Water Environments (Ed.), Coastal and FRESHWATERS (1st ed., pp. 136–158). Geneva: World Health Organization.

    Google Scholar 

  • Wicks, R. J., & Thiel, P. G. (1990). Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium Microcystis aeruginosa in a hypertrophic African reservoir. Environmental Science and Technology, 24, 1413–1418.

    Article  CAS  Google Scholar 

  • Wiegand, C., & Pflugmacher, S. (2005). Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicology and Applied Pharmacology, 203, 201–218.

    Article  CAS  Google Scholar 

  • Wilhelm, S. W., Farnsley, S. E., LeCleir, G. R., Layton, A. C., Satchwell, M. F., DeBruyn, J. M., et al. (2011). The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China. Harmful Algae, 10, 207–215.

    Article  CAS  Google Scholar 

  • Wunderlin, D. A., Díaz, M. P., Amé, M. V., Pesce, S. F., Hued, A. C., & Bistoni, M. A. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía River Basin (Córdoba—Argentina). Water Research, 35, 2881–2894.

    Article  CAS  Google Scholar 

  • Xu, Y., Yang, F., Liu, Y., Wang, Z., Wang, J., Wang, G., et al. (2011). Genetic diversity of Microcystis populations in a bloom and its relationship to the environmental factors in Qinhuai River, China. Microbiological Research, 167, 20–26.

    Article  Google Scholar 

  • Yunes, J. S., Cunha, N. T., Proença, L. A. O., Barros, L. P., & Monserrat, J. M. (2003). Cyanobacterial neurotoxins from Southern Brazilian freshwaters. Comments on Toxicology, 9, 103–115.

    Article  CAS  Google Scholar 

  • Znachor, P., Jurczak, T., Komárková, J., Jezberová, J., Mankiewicz, J., Kaštovská, K., et al. (2006). Summer changes in Cyanobacterial bloom composition and microcystin concentration in eutrophic Czech reservoirs. Environmental Toxicology, 21, 236–243.

    Article  CAS  Google Scholar 

  • Zurawell, R. W., Chen, H., Burke, J. M., & Prepas, E. E. (2005). Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environmets. Journal of Toxicology and Environmental Health, 8, 1–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Agencia Nacional de Promoción Científica y Técnica (FONCyT-PICT 1209 and 1225), Secretaría de Ciencia y Técnica (SECyT), and CONICET (National Research Council, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Valeria Amé.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Alternative figure

Water quality parameters from San Roque Reservoir evaluated during the studied period. a Chlorophyll-a; b dissolved oxygen (DO); c pH; d phytoplankton; e temperature; f total inorganic nitrogen; g total inorganic phosphates; h transparency. Asterisks mean significant differences between monitoring stations. Different letters indicate mean significant differences between seasons (capital letter for station 1, lower case for station 2; p < 0.05). (DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, M., Galanti, L., Ruibal, A.L. et al. First Report of Microcystins and Anatoxin-a Co-occurrence in San Roque Reservoir (Córdoba, Argentina). Water Air Soil Pollut 224, 1593 (2013). https://doi.org/10.1007/s11270-013-1593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1593-2

Keywords

Navigation