Skip to main content
Log in

Mass Transfer Characteristics of Nonaqueous Phase Liquid Based on Air–Liquid Interfacial Area in Variably Saturated Porous Media

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Vapor phase mass transfer is an important interphase transport process that dominates the overall transport phenomena in liquid–gas system in porous media. Volatilization of nonaqueous phase liquids (NAPLs) in porous media is such system that takes place during the remediation of volatile organic compound-contaminated soil using soil vapor extraction. Usually, interphase mass transfer coefficient is lumped together with the air–liquid interfacial area because of the inaccessibility to quantify this parameter due to the heterogeneous nature of the pore structure of the media and the morphology of the fluid distribution. In this paper, the air–liquid interfacial area is quantified using a simple method derived from pressure–saturation relationship in three glass bead media. A series of one-dimensional NAPL volatilization experiments were carried out in a horizontal column for the same porous media by using toluene as the single contaminant. Experiments were conducted for NAPL saturation range of 13.8 ~ 71 % and pore gas velocities of 0.1 ~ 2 cm/s, and lumped mass transfer coefficients were evaluated. Actual vapor phase mass transfer coefficients were calculated using corresponding air–liquid interfacial area for a specific NAPL saturation and characterized in dimensionless form for all porous media. Results revealed that the vapor phase mass transfer increases with pore gas velocities and grain sizes but decreases with NAPL saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamson, A. W., & Gast, A. P. (1997). Physical chemistry of surfaces. New York: Wiley.

    Google Scholar 

  • Anwar, A. H. M. F. (2008). Estimation of mass transfer coefficients using air–liquid interfacial area in porous media. Journal of Environmental Research and Development, 3(2), 331–341.

    CAS  Google Scholar 

  • Anwar, A. H. M. F., & Matsubayashi, U. (2000). Method of estimating air–liquid interfacial area using soil characteristics curve. Journal of Groundwater Hydrology, 42(2), 159–174.

    Google Scholar 

  • Anwar, A. H. M. F., Bettahar, M., & Matsubayashi, U. (2000). A method for determining air–water interfacial area in variably saturated porous media. Journal of Contaminant Hydrology, 43, 129–146.

    Article  Google Scholar 

  • Anwar, A. H. M. F., Tien, T. H., Inoue, Y., & Takagi, F. (2003). Mass transfer correlation for non-aqueous phase liquid volatilization in porous media. Environmental Science and Technology, 37(7), 1277–1283.

    Article  Google Scholar 

  • Armstrong, J. E., Frind, E. O., & McClellan, R. D. (1994). Nonequilibrium mass transfer between the vapor, aqueous, and solid phases in unsaturated soils during vapor extraction. Water Resources Research, 30(2), 355–368.

    Article  CAS  Google Scholar 

  • Baehr, A. L., Hoag, G. E., & Marley, M. C. (1989). Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport. Journal of Contaminant Hydrology, 4, 1–26.

    Article  CAS  Google Scholar 

  • Batterman, S., Kulshrestha, A., & Cheng, H.-Y. (1995). Hydrocarbon vapor transport in low moisture soils. Environmental Science and Technology, 29(1), 171–180.

    Article  CAS  Google Scholar 

  • Bear, J. (1972). Dynamics of fluids in porous media. New York: Elsevier. 764p.

    Google Scholar 

  • Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (1960). Transport phenomena. New York: Wiley. 755p.

    Google Scholar 

  • Bradford, S. A., & Leij, F. J. (1997). Estimating interfacial areas for multi-fluid soil systems. Journal of Contaminant Hydrology, 27, 83–105.

    Article  CAS  Google Scholar 

  • Brusseau, M. L. (1991). Transport of organic chemicals by gas advection in structured or heterogeneous porous media: development of a model and application to column experiments. Water Resources Research, 27(12), 3189–3199.

    Article  CAS  Google Scholar 

  • Brusseau, M. L., Peng, S., Schnaar, G., & Murao, A. (2007). Measuring air–water interfacial areas with x-ray microtomography and interfacial partitioning tracer tests. Environmental Science and Technology, 2007(41), 1956–1961.

    Article  Google Scholar 

  • Cary, J. W. (1994). Estimating the surface area of fluid phase interfaces in porous media. Journal of Contaminant Hydrology, 15, 243–248.

    Article  Google Scholar 

  • Celia, M. A., Gray, W. G., Montemagno, C. D., & Reeves P. C. (1998). On the inclusion of interfacial area in models of two-phase flow in porous media. Proc. of the GQ’98 conf. on groundwater quality: remediation and protection, Tubingen, Germany. IAHS Publ. No. 250: 81–87.

  • Chao, S., & Stephens, D. B. (1995). An analytical solution for vertical transport of volatile chemicals in the vadose zone. Journal of Contaminant Hydrology, 18, 259–277.

    Article  Google Scholar 

  • Chao, K.-P., Ong, S. K., & Huang, M.-C. (2008). Mass transfer of VOCs in laboratory-scale air sparging tank. Journal of Hazardous Materials, 152(2008), 1098–1107.

    Article  CAS  Google Scholar 

  • Cho, J., Annable, M. D., & Rao, P. S. C. (2005). Measured mass transfer coefficients in porous media using specific interfacial area. Environmental Science and Technology, 39, 7883–7888.

    Article  CAS  Google Scholar 

  • Conant, B. H., Gillham, R. W., & Mendoza, C. A. (1996). Vapor transport of trichloroethylene in the unsaturated zone: field and numerical modeling investigations. Water Resources Research, 32(1), 9–22.

    Article  CAS  Google Scholar 

  • Costanza-Robinson, M. S., & Brusseau, M. L. (2002). Air-water interfacial areas in unsaturated soils: evaluation of interfacial domains. Water Resources Research, 38(10), 1195. doi:10.1029/2001WR000738.

    Article  Google Scholar 

  • Costanza-Robinson, M. S., Harrold, K. H., & Lieb-Lappen, R. M. (2008). X-ray microtomography determination of air–water interfacial area–water saturation relationships in sandy porous media. Environmental Science and Technology, 42, 2949–2956.

    Article  CAS  Google Scholar 

  • Culligan, K. A., Wildenschild, D., Christensen, B. S. B., Gray, W., Rivers, M. L., & Tompson, A. F. B. (2004). Interfacial area measurements for unsaturated flow through a porous medium. Water Resources Research, 40, W12413. doi:10.1029/2004WR003278.

    Article  Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrogeology. New York: Wiley. 824p.

    Google Scholar 

  • Falta, R. W., Pruess, K., Javandel, I., & Witherspoon, P. A. (1992). Numerical modeling of steam injection for the removal of nonaqeous phase liquids from the subsurface: 1. Numerical formulation. Water Resources Research, 28(2), 433–449.

    Article  CAS  Google Scholar 

  • Farmer, W. J., Yang, M. S., Letey, J., & Spencer, W. F. (1980). Hexachlorobenzene: its vapor pressure and vapor phase diffusion in soil. Soil Science Society of America Journal, 44, 676–680.

    Article  CAS  Google Scholar 

  • Fischer, U., Schulin, R., Kelle, M., & Stauffer, F. (1996). Experimental and numerical investigation of soil vapor extraction. Water Resources Research, 32(12), 3413–3427.

    Article  CAS  Google Scholar 

  • Gierke, J. S., Hutzler, N. J., & Crittenden, J. C. (1990). Modeling the movement of volatile organic chemicals in columns of unsaturated soil. Water Resources Research, 26(7), 1529–1547.

    Article  CAS  Google Scholar 

  • Gierke, J. S., Hutzler, N., & McKenzie, D. B. (1992). Vapor transport in unsaturated soil columns: implications for vapor extraction. Water Resources Research, 28(2), 323–335.

    Article  CAS  Google Scholar 

  • Hoeg, S., Scholer, H. F., & Warnatz, J. (2004). Assessment of interfacial mass transfer in water-unsaturated soils during vapor extraction. Journal of Contaminant Hydrology, 74, 163–195.

    Article  CAS  Google Scholar 

  • Imhoff, P. T., & Jaffe, P. R. (1994). Effect of liquid distribution on gas-water phase mass transfer in an unsaturated sand during infiltration. Journal of Contaminant Hydrology, 16, 359–380.

    Article  CAS  Google Scholar 

  • Jury, W. A., Russo, D., Streile, G., & El Abd, H. (1990). Evaluation of volatilization by organic chemicals residing below the soil surface. Water Resources Research, 26(1), 13–20.

    Article  CAS  Google Scholar 

  • Karkare, M. V., & Fort, T. (1996). Determination of the air-water interfacial area in wet “unsaturated” porous media. Langmuir, 12, 2041–4044.

    Article  CAS  Google Scholar 

  • Kawanishi, T., Hayashi, W., Roberts, P. V., & Blunt, M. J. (1998). Fluid-fluid interfacial area during two and three phase fluid displacement in porous media: a network model study. Proc. of the GQ’98 conf. on groundwater quality: remediation and protection, Tubingen, Germany. IAHS Publ. No. 250: 89–96.

  • Kearl, P. M., Korte, N. E., Gleason, T. A., & Beale, J. S. (1991). Vapor extraction experiments with laboratory soil columns: implications for field programs. Waste Management, 11, 231–239.

    Article  CAS  Google Scholar 

  • Kim, H., Rao, P. S. C., & Annable, M. D. (1997). Determination of effective air–water interfacial area in partially saturated porous media using surfactant adsorption. Water Resources Research, 33, 2705–2711.

    Article  CAS  Google Scholar 

  • Kim, H., Rao, P. S. C., & Annable, M. D. (1999). Gaseous tracer technique for estimating air–water interfacial areas and interface mobility. Soil Science Society of America Journal, 63, 1554–1560.

    Article  CAS  Google Scholar 

  • McColl, C. M., Johnson, G. R., & Brusseau, M. L. (2008). Evaporative mass transfer behavior of a complex immiscible liquid. Chemosphere, 73, 607–613.

    Article  CAS  Google Scholar 

  • Miller, C. T., Poirier-McNeill, M. M., & Mayer, A. S. (1990). Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics. Water Resources Research, 26(11), 2783–2796.

    Article  Google Scholar 

  • Millington, R. J. (1959). Gas diffusion in porous media. Science, 130, 100–102.

    Article  CAS  Google Scholar 

  • Mohamed, A. M. I., El-menshawy, N., & Saif, A. M. (2007). Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement. Journal of Environmental Management, 83, 339–350.

    Article  CAS  Google Scholar 

  • Montemagno, C. D., & Gray, W. G. (1995). Photoluminescent volumetric imaging: a technique for the exploration of multi-phase flow and transport in porous media. Geophysical Research Letters, 22, 425–428.

    Article  Google Scholar 

  • Powers, S. E., Abriola, L. M., & Weber, W. J., Jr. (1992). An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: steady state mass transfer rates. Water Resources Research, 28(10), 2691–2705.

    Article  CAS  Google Scholar 

  • Powers, S. E., Abriola, L. M., & Weber, W. J., Jr. (1994). An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: transient mass transfer rates. Water Resources Research, 30(2), 321–332.

    Article  CAS  Google Scholar 

  • Rathfelder, K., Yeh, W. W.-G., & Mackay, D. (1991). Mathematical simulation of soil vapor extraction systems: model development and numerical examples. Journal of Contaminant Hydrology, 8(3–4), 263–297.

    Article  CAS  Google Scholar 

  • Reeves, P. C., & Celia, M. A. (1996). A functional relationship between capillary pressure, saturation and interfacial area as revealed by a pore-scale network model. Water Resources Research, 32(8), 2345–2358.

    Article  Google Scholar 

  • Sallam, A., Jury, W. A., & Letey, J. (1984). Measurement of gas diffusion coefficient under relatively low air-filled porosity. Soil Science Society of America Journal, 48, 3–6.

    Article  Google Scholar 

  • Schaefer, C. E., Dicarlo, D. A., & Blunt, M. J. (2000). Experimental measurement of air-water interfacial area during gravity drainage and secondary imbibition in porous media. Water Resources Research, 36, 885–890.

    Article  Google Scholar 

  • Sherwood, T. K., Pigford, R. L., & Wilke, C. R. (1975). Mass transfer. New York: McGraw-Hill. 677p.

    Google Scholar 

  • Skopp, J. (1985). Oxygen uptake and transport in soils: analysis of the air-water interfacial area. Soil Science Society of America Journal, 49(6), 1327–1331.

    Article  CAS  Google Scholar 

  • Van der Ham, A. G. J., & Brouwers, H. J. H. (1998). Modeling and experimental investigation of transient, nonequilibrium mass transfer during steam stripping of a nonaqueous phase liquid in unsaturated porous media. Water Resources Research, 34(1), 47–54.

    Article  Google Scholar 

  • Van Genuchten, M. T., & Alves, W. J. (1982). Analytical solutions of the one-dimensional convective-dispersive solute transport equation. Washington, D. C.: U. S. Department of Agriculture. 149p.

    Google Scholar 

  • Weber, W. J., Jr., McGinley, P. M., & Katz, L. E. (1991). Sorption phenomena in subsurface systems: concepts, models and effects on contaminant fate and transport. Water Research, 25, 499–528.

    Article  CAS  Google Scholar 

  • Wilkins, M. D., Abriola, L. M., & Pennell, K. D. (1995). An experimental investigation of rate-limited nonaqueous phase liquid volatilization in unsaturated porous media: steady state mass transfer. Water Resources Research, 31(9), 2159–2172.

    Article  CAS  Google Scholar 

  • Yoon, H., Kim, J. H., Liljestrand, H. M., & Khim, J. (2002). Effect of water content on transient nonequilibrium NAPL–gas mass transfer during soil vapor extraction. Journal of Contaminant Hydrology, 54(1–2), 1–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The experiments were carried out at Research Center for Advanced Waste and Emission Management, Nagoya University, Japan. Author acknowledges the help supported by Dr Truong Hong Tien and Dr Yasushi Inoue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. M. Faisal Anwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anwar, A.H.M.F. Mass Transfer Characteristics of Nonaqueous Phase Liquid Based on Air–Liquid Interfacial Area in Variably Saturated Porous Media. Water Air Soil Pollut 224, 1567 (2013). https://doi.org/10.1007/s11270-013-1567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1567-4

Keywords

Navigation