Skip to main content

Advertisement

Log in

Review of Ecological Engineering Solutions for Rural Non-Point Source Water Pollution Control in Hubei Province, China

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Rural non-point source (RNPS) water pollution control is problematic in Hubei Province, which is a typical agricultural region with abundant rainfall and a developed natural surface water network. The concept of best management practices (BMP) originating from the USA has already been introduced with the aim to reduce the application of chemical fertilizers and pesticides, and water and soil loss. However, a comprehensive evaluation of rural wastewater and nutrient reutilization to benefit the rural communities and the environment has not been attempted. To fill this gap, this review paper explores the major contributors of RNPS water pollution in Hubei Province, assesses the status of watercourses and discusses the prevalent ecological engineering techniques including vegetated filter strips (VFS), ecological ditches (ED), constructed wetlands (CW), and biogas plants (BP) with respect to aspects such as water purification, energy generation, and nutrient reduction and recirculation. Findings indicate that RNPS water pollution continuously increased for the past 10 years. Chemical fertilizers, poultry and livestock breeding, aquaculture, and rural living are the major sources of elevated chemical oxygen demand, ammonia–nitrogen, total nitrogen, and total phosphorus loads discharged to receiving watercourses. Finally, ecological engineering technologies such as VFS, ED, CW, and BP are proposed for villages and communities to combat RNPS water pollution. BMP are a promising approach to create a sustainable agricultural system, improve the rural energy consumption structure and living conditions, decrease wastewater discharges, and reduce chemical fertilizer application rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnold, J. G., Allen, P. M., & Bernhardt, G. A. (1993). Comprehensive surface-ground-water flow model. Journal of Hydrology, 142, 47–69.

    Article  Google Scholar 

  • Beltman, B., Meuleman, A. F. M., & Scheffer, R. A. (2004). Water pollution control by aquatic vegetation of treatment wetlands. Wetlands Ecology and Management, 12, 459–471.

    Article  Google Scholar 

  • Berglund, M., & Böjesson, P. (2006). Assessment of energy performance in the life-cycle of biogas production. Biomass and Bioenergy, 30, 254–266.

    Article  Google Scholar 

  • Bhattarai, R., Kalita, P. K., & Patel, M. K. (2009). Nutrient transport through a vegetative filter strip with subsurface drainage. Journal of Environmental Management, 90, 1868–1876.

    Article  CAS  Google Scholar 

  • Blanco-Canqui, H., Gantzer, C. J., Anderson, S. H., Alberts, E. E., & Thompson, A. L. (2004). Grass barrier and vegetative filter strip effectiveness in reducing runoff, sediment, nitrogen, and phosphorus loss. Soil Science Society of America Journal, 68, 1670–1678.

    Article  CAS  Google Scholar 

  • Bouldin, J. L., Farris, J. L., Moore, M. T., & Cooper, C. M. (2004). Vegetative and structural characteristics of agricultural drainages in the Mississippi delta landscapes. Environmental Pollution, 132, 403–411.

    Article  CAS  Google Scholar 

  • Chen, H. S., Wang, G. H., Song, F. G., & Li, J. Q. (2010a). Retention and removal effects of ecological ditch on agricultural non-point source pollutants. Acta Agriculturae Jiangxi, 22, 121–124 (in Chinese).

    Google Scholar 

  • Chen, Y., Yang, G., Sweeney, S., & Feng, Y. (2010b). Household biogas use in rural China: a study of opportunities and constraints. Renewable and Sustainable Energy Reviews, 14, 545–553.

    Article  Google Scholar 

  • Díaz, F. J., Ó Geen, A. T., & Dahlgren, R. A. (2012). Agricultural pollutant removal by constructed wetlands: implications for water management and design. Agricultural Water Management, 104, 171–183.

    Article  Google Scholar 

  • Ding, W. G., Niu, H. W., Chen, J. S., Du, J., & Wu, Y. (2012). Influence of household biogas digester use on household energy consumption in a semi-arid rural region of northwest China. Applied Energy, 97, 16–23.

    Article  Google Scholar 

  • Dowd, B. M., Press, D., & Los Huertos, M. (2008). Agricultural non-point source water pollution policy: the case of California’s central coast. Agriculture, Ecosystems and Environment, 128, 151–161.

    Article  Google Scholar 

  • Duchemin, M., & Hogue, R. (2009). Reduction in agricultural non-point source pollution in the first year following establishment of an integrated grass/tree filter strip system in southern Quebec (Canada). Agriculture, Ecosystems and Environment, 131, 85–97.

    Article  CAS  Google Scholar 

  • Duchemin, M., Lafrance, P., & Bernard, C. (2002). Les bandes enherbées: une pratique de conservation efficace pour réduire la pollution diffuse. Fiche technique #FT040905Fb. IRDA, 2p. http://www.irda.qc.ca/_documents/_Results/53.pdf. Accessed 1 October 2012.

  • Fraser, L. H., Carty, S. M., & Steer, D. (2004). A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresource Technology, 94, 185–192.

    Article  CAS  Google Scholar 

  • Gburek, W. J., & Sharply, A. N. (1999). Hydrologic controls on phosphorus loss from upland agriculture watersheds. Journal of Environmental Quality, 27, 267–277.

    Article  Google Scholar 

  • Gburek, W. J., Sharply, A. N., Heathwaite, L., & Folmar, G. J. (2000). Phosphorus management at the watershed scale: a modification of the phosphorus index. Journal of Environmental Quality, 29, 130–144.

    Article  CAS  Google Scholar 

  • Guo, L. G., & Li, Z. J. (2003). Effects of nitrogen and phosphorus from fish cage-culture on the communities of a shallow lake in middle Changjiang River basin of China. Aquaculture, 226, 201–212.

    Article  CAS  Google Scholar 

  • Hargreaves, J. A. (1998). Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, 166, 181–212.

    Article  CAS  Google Scholar 

  • Hassen, M., Fekadu, Y., & Gate, Z. (2004). Validation of agricultural non-point source (AGNPS) pollution model in Kori watershed, South Wollo, Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 6, 97–109.

    Article  Google Scholar 

  • He, P. J. (2010). Anaerobic digestion: an intriguing long history in China. Waste Management, 30, 549–550 (in Chinese).

    Article  CAS  Google Scholar 

  • He, L. S., Zhu, Y. B., Xi, B. D., & Liu, H. L. (2004). Recirculating and enhanced vertical flow constructed wetland for treatment of wastewater from pig farm. China Water and Wastewater, 20, 5–8 (in Chinese).

    CAS  Google Scholar 

  • He, Y. Q., Wei, J. B., Hu, Y. A., Wu, Z. F., Cheng, J., Liu, P., et al. (2012). Non-point source pollution control functions of constructed wetland in the ditches of paddy field system in Pearl River Delta. Chinese Journal of Ecology, 31, 394–398 (in Chinese).

    Google Scholar 

  • Herzon, I., & Helenius, J. (2008). Agricultural drainage ditches, their biological importance and functioning. Biological Conservation, 141, 1171–1183.

    Article  Google Scholar 

  • Hu, J. S., Li, Z. H., Xing, X. Y., Kang, Q., & Wang, J. Z. (2009). Study on the cause of water contamination in rural areas of Hubei Province and the managing method. Chinese Journal of Agricultural Resources and Regional Planning, 30, 64–71 (in Chinese).

    Google Scholar 

  • Hu, H. X., Zhu, X. H., Huang, J. Y., Ma, Y. H., & Yan, P. (2010). Research of ditch ecological interception of nitrogen and phosphorus. Journal of Soil and Water Conservation, 24, 141–145.

    Google Scholar 

  • Jiang, D. B., & Tan, Y. (2005). The agricultural non-point pollution in the Hubei province and control countermeasures. Agro-Environment and Development, 22, 31–34 (in Chinese).

    Google Scholar 

  • Jiang, C. L., Cui, G. B., Fan, X. Q., & Zhang, Y. B. (2004). Purification capacity of ditch wetland to agricultural non-point pollutants. Environmental Science, 25, 125–128 (in Chinese).

    Google Scholar 

  • Kadlec, R. H., & Knight, R. L. (1996). Treatment wetland. Boca Raton: Lewis.

    Google Scholar 

  • Kadlec, R. H., Roy, S. B., Munson, R. K., Charlton, S., & Brownlie, W. (2010). Water quality performance of treatment wetlands in the Imperial Valley, California. Ecological Engineering, 36, 1093–1107.

    Article  Google Scholar 

  • Katuwal, H., & Bohara, A. K. (2009). Biogas: a promising renewable technology and its impact on rural households in Nepal. Renewable and Sustainable Energy Reviews, 13, 2668–2674.

    Article  Google Scholar 

  • Lee, K. H., Isenhart, T. M., Schultz, R. C., & Mickelson, S. K. (2000). Multispecies riparian buffers trap sediment and nutrients during rainfall simulations. Journal of Environmental Quality, 29, 1200–1205.

    Article  CAS  Google Scholar 

  • Li, Y. X., Xu, X. M., Hong, C. H., He, J., Li, Z. X., Chen, Y. B., et al. (2009). The application study on surface constructed wetlands for non-point source pollution control at the Dianchi Lake shore region. Journal of Agro-Environment Science, 28, 2155–2160 (in Chinese).

    CAS  Google Scholar 

  • Li, H. E., Deng, N., Yang, Y. Q., & Shi, D. Q. (2010). Clarification efficiency of vegetative filter strips to several pollutants in surface runoff. Transactions of the Chinese Society of Agricultural Engineering, 26, 81–86 (in Chinese).

    Google Scholar 

  • Li, J. S., Duan, N., Guo, S., Shao, L., Lin, C., Wang, J. H., Hou, J., Hou, Y., Meng, J., & Han, M. Y. (2012). Renewable resource for agricultural ecosystem in China: Ecological benefit for biogas by-product for planting. Ecological Informatics, 12, 101–110.

    Article  Google Scholar 

  • Lu, S., Zhang, P., Jin, X., Xiang, C., Gui, M., Zhang, J., et al. (2009). Nitrogen removal from agricultural runoff by full-scale constructed wetland in China. Hydrobiologia, 621, 115–126.

    Article  CAS  Google Scholar 

  • Ma, Y. Z. (2010). On the causes of and countermeasures against environmental pollution in China’s rural areas—from the research perspective of regulation economics. Journal of Guangxi University for Nationalities, 32, 18–21 (in Chinese).

    CAS  Google Scholar 

  • MacDonald, H. F., Bergstrom, J. C., & Houston, J. E. (1998). A proposed methodology for measuring incremental environmental benefits from using constructed wetlands to control agricultural non-point-source pollution. Journal of Environmental Management, 54, 259–267.

    Article  Google Scholar 

  • Maillard, P., & Santos, N. A. P. (2008). A spatial-statistical approach for modeling the effect of non-point source pollution on different water quality parameters in the Velhas river watershed-Brazil. Journal of Environmental Management, 86, 151–170.

    Article  Google Scholar 

  • Mankin, K. R., Ngandu, D. M., Barden, C. J., Hutchinson, S. L., & Geyer, W. A. (2007). Grass-shrub riparian buffer removal of sediment, phosphorus, and nitrogen from simulated runoff. Journal of American Water Resource Association, 43, 1108–1116.

    Article  CAS  Google Scholar 

  • Moore, M. T., Kröer, R., Locke, M. A., Cullum, R. F., Steinriede, R. W., Jr., Testa, I. S., et al. (2010). Nutrient mitigation capacity in Mississippi Delta, USA drainage ditches. Environmental Pollution, 158, 175–184.

    Article  CAS  Google Scholar 

  • National Bureau of Statistics of China. (2009). China Statistical Yearbook. Beijing: China Statistics Press (in Chinese).

    Google Scholar 

  • National Bureau of Statistics of China. (2010). China Statistical Yearbook. Beijing: China statistics press. In Chinese.

    Google Scholar 

  • Needelman, B. A. (2007). Improved management of agricultural drainage ditches for water quality protection: an overview. Journal of Soil and Water Conservation, 62, 171–178.

    Google Scholar 

  • Novotny, V., & Chesters, G. (1981). Handbook of non-point pollution source and management. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Novotny, V., & Olem, H. (1994). Water quality: prevention, identification and management of diffuse pollution. New York: Van Nostrand Reinhold.

    Google Scholar 

  • O’Geen, A. T., Budd, R., Gan, J., Maynard, J. J., Parikh, S. J., & Dahlgren, R. A. (2010). Mitigating non-point source pollution in agriculture with constructed and restored wetlands. Advances in Agronomy, 108, 1–76.

    Article  Google Scholar 

  • Ongley, E. D., Zhang, X. L., & Yu, T. (2010). Current status of agricultural and rural non-point source pollution assessment in China. Environmental Pollution, 158, 1159–1168.

    Article  CAS  Google Scholar 

  • Ouyang, W., Wang, X. L., Hao, F. H., & Srinivasan, R. (2009). Temporal-spatial dynamics of vegetation variation on non-point source nutrient pollution. Ecological Modelling, 220, 2702–2713.

    Article  CAS  Google Scholar 

  • Pionke, H. B., Gburek, W. J., & Sharply, A. N. (2000). Critical source area controls on water quality in an agricultural watershed located in the Chesapeake basin. Ecological Engineering, 14, 325–335.

    Article  Google Scholar 

  • Rao, J., Ji, X. T., Ouyang, W., Zhao, X. C., & Lai, X. H. (2012). Dilemma analysis of China agricultural non-point source pollution based on peasants’ household surveys. Procedia Environmental Sciences, 13, 2169–2178.

    Article  CAS  Google Scholar 

  • Reinhardt, M., Gähter, R., Wehrli, B., & Müller, B. (2005). Phosphorus retention in small constructed wetlands treating agricultural drainage water. Journal of Environmental Quality, 34, 1251–1259.

    Article  CAS  Google Scholar 

  • Schmitt, T. J., Dosskey, M. G., & Hoagland, K. D. (1999). Filter strip performance and processes for different vegetation, widths and contaminants. Journal of Environmental Quality, 28, 1479–1489.

    Article  CAS  Google Scholar 

  • Scholz, M. (2010). Wetland systems—storm water management control. Berlin: Springer.

    Google Scholar 

  • Seidel, K. (1966). Reinigung von Gerwässern durch höhere Pflanzen (treatment of watercourses via macrophytes). Deutsche Naturwissenschaften (German Natural Sciences), 53, 297–298 (in German).

    Google Scholar 

  • Shen, Z. Y., Liao, Q., Hong, Q., & Gong, Y. W. (2012). An overview of research on agricultural non-point source pollution modelling in China. Separation and Purification Technology, 84, 104–111.

    Article  CAS  Google Scholar 

  • Simpkins, W. W., Wineland, T. R., Andress, R. J., Johnston, D. A., & Caron, G. C. (2002). Hydrogeological constraints on riparian buffers for reduction of diffuse pollution: examples from the Bear Creek Watershed in Iowa. USA. Water Science and Technology, 45, 61–68.

    CAS  Google Scholar 

  • Sindilariu, P. D., Schulz, C., & Reiter, R. (2007). Treatment of flow-through trout aquaculture effluents in a constructed wetland. Aquaculture, 270, 92–104.

    Article  CAS  Google Scholar 

  • Smith, D. R. (2009). Assessment of in-stream phosphorus dynamics in agricultural drainage ditches. Science of the Total Environment, 407, 3883–3889.

    Article  CAS  Google Scholar 

  • Srivastava, P., Edwards, D. R., Daniel, T. C., Moore, P. A., Jr., & Costello, T. A. (1996). Performance of vegetative filter strips with varying pollutant source and filter strip lengths. Transactions of the ASABE, 39, 2231–2239.

    Google Scholar 

  • Statistics Bureau of Hubei Province. (2001 to 2010). Hubei Rural Statistical Yearbooks from 2001 to 2010. Beijing: China Statistics Press (in Chinese).

  • Tambone, F., Scaglia, B., D’Imporzano, G., Schievano, A., Orzi, V., & Salati, S. (2010). Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere, 81, 577–583.

    Article  CAS  Google Scholar 

  • Tang, X. Q., Huang, S.-L., Scholz, M., & Li, J. Z. (2009). Nutrient removal in pilot-scale constructed wetlands treating eutrophic river water: assessment of plants, intermittent artificial aeration and polyhedron hollow polypropylene balls. Water, Air, and Soil Pollution, 197, 61–73.

    Article  CAS  Google Scholar 

  • Tang, X. Q., Wu, M., Yang, W. J., Yin, W., Jin, F., Ye, M., et al. (2012). Ecological strategy for eutrophication control. Water, Air, and Soil Pollution, 223, 723–737.

    Article  CAS  Google Scholar 

  • Vidon, P., & Hill, A. R. (2004). Denitrification and patterns of electron donors and acceptors in eight riparian zones with contrasting hydrogeology. Biogeochemistry, 71, 259–283.

    Article  CAS  Google Scholar 

  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380, 48–65.

    Article  CAS  Google Scholar 

  • Wand, H., Vacca, G., Kuschk, P., Krüger, M., & Kästner, M. (2007). Removal of bacteria by filtration in planted and non-planted sand columns. Water Research, 41, 159–167.

    Article  CAS  Google Scholar 

  • Wang, Y. Y. (2009). Management strategy and factors impacting on water quality in agriculture drainage ditches. Technology of Water and Soil Conservation, 2, 35–36 (in Chinese).

    Google Scholar 

  • Wang, L. M., & Wang, Y. H. (2008). Research and application advances on vegetative filter strip. Chinese Journal of Applied Ecology, 19, 2074–2080 (in Chinese).

    Google Scholar 

  • Wang, Y., Wang, J. G., Li, W., Bo, L. J., & Yang, L. Z. (2010). Initial exploration of mechanism of ecological ditch intercepting nitrogen and phosphorus in drainage from farmland. Journal of Ecology and Rural Environment, 26, 586–590 (in Chinese).

    CAS  Google Scholar 

  • Wei, X. M., Chen, B., Qu, Y. H., Lin, C., & Chen, G. Q. (2009). Energy analysis for “Four in One” peach production system in Beijing. Communications in Nonlinear Science and Numerical Simulation, 14, 946–958.

    Article  Google Scholar 

  • Wen, L., & Recknagel, F. (2006). Balancing phosphorus adsorption and consumption processes in experimental treatment ponds for agricultural drainage water. Ecological Engineering, 28, 14–24.

    Article  Google Scholar 

  • Wu, Y. H., Hu, Z. Y., Yang, L. Z., Graham, B., & Kerr, P. G. (2011). The removal of nutrients from non-point source wastewater by a hybrid bioreactor. Bioresource Technology, 102, 2419–2426.

    Article  CAS  Google Scholar 

  • Yang, Y., Chen, Y., Zhang, X. L., Ongley, E., & Zhao, L. (2012). Methodology for agricultural and rural NPS pollution in a typical county of the north China Plain. Environmental Pollution, 168, 170–176.

    Article  CAS  Google Scholar 

  • Ye, C. B., Li, L., Zhang, J. J., & Yang, Y. (2012). Study on ABR stage-constructed wetland integrated system in treatment of rural sewage. Procedia Environmental Sciences, 12, 687–692.

    Article  CAS  Google Scholar 

  • Yin, C. Q., & Mao, Z. B. (2002). Non-point pollution control for rural areas of China with ecological engineering technologies. Chinese Journal of Applied Ecology, 13, 229–232 (in Chinese).

    Google Scholar 

  • Yin, X. F., Hu, Z. Y., Zhou, L. X., Wu, Y. H., & Yang, L. Z. (2008). Study on the construction of the ecological agro-ditch and its effect on purification sewage on the northern lakeshore of Dianchi Lake. Journal of Anhui Agricultural Science, 36, 9676–9679 (in Chinese).

    Google Scholar 

  • Zeng, X., Ma, Y., & Ma, L. (2007). Utilization of straw in biomass energy in China. Renewable and Sustainable Energy Reviews, 11, 976–987.

    Article  CAS  Google Scholar 

  • Zhang, L. (2010). Introduction of the First National Pollution Census Bulletin no. 2010-2-9. Beijing: Ministry of Environmental Protection (in Chinese).

    Google Scholar 

  • Zhang, X., Wang, X. L., & Zhang, J. Y. (2005). Negative influence of the households behaviors upon agricultural ecology and countermeasures. Rural Economic, 11, 95–98 (in Chinese).

    Google Scholar 

  • Zhou, X. X., Jia, Z. H., Kang, S. J., & Liu, J. G. (2005). Purification efficiency of agriculture wastewater by subsurface constructed wetlands. Journal of Northwest Hydroelectric Power, 21, 60–63 (in Chinese).

    CAS  Google Scholar 

  • Zhu, D. L., Sun, C., Zhang, H. H., Wu, Z. L., Jia, B., & Zhang, Y. (2012). Roles of vegetation, flow type and filled depth on livestock wastewater treatment through multi-level mineralized refuse-based constructed wetlands. Ecological Engineering, 39, 7–15.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (no. 51209011 ), “948” Imported Project of Ministry of Water Resource (no. 201208), Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China (no. CKSD2011695/SL), Central Public Interest Scientific Institution Research Fund (nos. CKSF2012020/CJ and CKSF2012056/SH), and the Ministry of Water Resource, Public Interest Scientific Research Fund (no. 201101027). The authors greatly appreciate the technical support provided by Mr. Minzhe Tang regarding figure mapping and statistical data analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianqiang Tang or Miklas Scholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Tang, X., Li, Q. et al. Review of Ecological Engineering Solutions for Rural Non-Point Source Water Pollution Control in Hubei Province, China. Water Air Soil Pollut 224, 1561 (2013). https://doi.org/10.1007/s11270-013-1561-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1561-x

Keywords

Navigation