Factors Affecting Nutrient Concentration and Stable Carbon and Nitrogen Isotope Ratio of Particulate Organic Matter in the Ishikari River System, Japan

  • Pawan Kumar JhaEmail author
  • Minagawa Masao


Water and particulate organic matter samples were analyzed for dissolved nutrients and stable carbon and nitrogen isotope ratio, respectively, in the Ishikari River system, from August 2009 to July 2010. Dissolved nutrient concentration showed significant spatial and seasonal variations within the river system. Mean concentration and standard deviation of ammonium, nitrite, nitrate, phosphate, silica, and dissolved organic carbon were 0.17 ± 0.17, 0.01 ± 0.01, 0.93 ± 0.59, 0.03 ± 0.01, 9.07 ± 2.40, and 3.7 ± 0.93 (mg l−1), respectively. The δ 13C, δ 15N, and molar C/N ratio of particulate organic matter samples ranged from −34.6 to −24.6‰, −4.8 to 15.8‰, and 5.3 to 17.8, respectively, in the Ishikari River system. Nutrient concentration showed increasing trend during the past 50 years owing to increased urban growth and development taking place in the river basin. The molar ratio of dissolved inorganic nitrogen (DIN)/dissolved inorganic phosphate (DIP) was higher than the Redfield ratio (16:1), which implies phosphorus limitation of phytoplankton growth in the river water. The negative value of the indicator of coastal eutrophication potential for nitrogen for the Ishikari River system indicated the absence of eutrophication problem in its coastal areas. Annual nutrient fluxes from Ishikari River for dissolved inorganic nitrogen (DIN-N), phosphate (PO4-P), dissolved silica (SiO2-Si), and dissolved organic carbon (DOC-C) were 1.6 × 104, 379, 13.2 × 104, and 5.4 × 104 t year−1, respectively.


Ishikari River Nitrogen Phosphate Carbon isotope Nitrogen isotope Nutrient molar ratios 



The authors thank Kudo Isao for providing the facility for the analysis of dissolved organic carbon. P.K. Jha is thankful to the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan for providing MOMBUSHO fellowship for Ph.D. The authors also thank Aiko Agui for providing assistance during laboratory work and the Editor and anonymous reviewers for giving suggestions which have markedly improved the manuscript.


  1. Akrasi, S. A., & Ansa-Asare, O. D. (2008). Assessing sediment and nutrient transport in the Pra Basin of Ghana. West African Journal of Applied Ecology, 13, 45–54.CrossRefGoogle Scholar
  2. Alam, M. J., Nagao, S., Takafumi Aramaki, T., Shibata, Y., & Yoneda, M. (2007). Transport of particulate organic matter in the Ishikari River, Japan during spring and summer. Nuclear Instruments and Methods in Physics Research B, 259, 513–517.CrossRefGoogle Scholar
  3. Asahi, K., Kato, K., & Shimizu, Y. (2003). Estimation of sediment discharge taking into account tributaries to the Ishikari river. Journal of Natural Disaster, 25, 17–22.Google Scholar
  4. Barros, G. V., Martinelli, L. A., Novais, T. M. O., Ometto, J. P. H. B., & Zuppi, G. M. (2010). Stable isotope of bulk organic matter to trace carbon and nitrogen dynamics in an estuarine ecosystem in Babitonga Bay (Santa Catarina, Brazil). Science of the Total Environment, 408, 2226–2232.CrossRefGoogle Scholar
  5. Bellos, D., Sawidis, T., & Tsekos, I. (2004). Nutrient chemistry of river Pinos (Thessalia, Greece). Environmental International, 30, 105–115.CrossRefGoogle Scholar
  6. Bennett, E. M., Carpenter, S. R., & Caraco, N. F. (2001). Human impact on erodable phosphorus and eutrophication: a global perspective. BioScience, 51(3), 227–234.CrossRefGoogle Scholar
  7. Berner, R. A., & Berner, R. A. (1996). Global environment: water, air and geochemical cycles (p. 376). Upper Saddle River: Prentice-Hall.Google Scholar
  8. Cai, Y., Guo, L., Douglas, T. A., & Whitledge, T. E. (2008). Seasonal variation in nutrient concentrations and speciation in the Chena river, Alaska. Journal of Geophysical Research, 113, G03035. doi: 10.1029/2008JG000733.CrossRefGoogle Scholar
  9. Chen, F., & Jia, G. (2009). Spatial and seasonal variation in δ13C and δ15N of particulate organic matter in a dam-controlled subtropical river. River Research and Applications, 25, 1169–1176.CrossRefGoogle Scholar
  10. Clesceri, N. L., Curran, S. J., & Sedlak, R. I. (1986). Relative importance of nutrient sources. Water Resources Bulletin, 22, 991–1000.CrossRefGoogle Scholar
  11. DeMaster, D. J., & Pope, R. H. (1996). Nutrient dynamics in Amazon shelf waters: results from AMASSEDS. Continental Shelf Research, 16, 263–289.CrossRefGoogle Scholar
  12. Dim, J. R., Sakura, Y., Fukami, H., & Miyakoshi, A. (2002). Spatial characteristics of groundwater temperature in the Ishikari Lowland, Hokkaido, northern Japan: analytical and numerical applications. Hydrogeology Journal, 10, 296–306.CrossRefGoogle Scholar
  13. Downing, J. A., Mcclain, M., Twilley, R., Melack, J. M., et al. (1999). The impact of accelerating land-use change on the N-cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry, 46, 109–148.Google Scholar
  14. Durr, H. H., Meybeck, M., Hartmann, J., Laruelle, G. G., & Roubeix, V. (2009). Global spatial distribution of natural riverine silica inputs to the coastal zone. Biogeosciences Discussions, 6, 1345–1401.CrossRefGoogle Scholar
  15. Falco, S., Niencheski, L. F., Rodilla, M., Romero, I., Gonzalez del Río, J., Sierra, J. P., & Mosso, C. (2010). Nutrient flux and budget in the Ebro estuary. Estuarine, Coastal and Shelf Science, 87, 92–102.CrossRefGoogle Scholar
  16. Garnier, J., Beusen, A., Thieu, V., Billen, G., & Bouwman, L. (2010). N:P:Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach. Global Biogeochemical Cycles, 24, GB0A05. doi: 10.1029/2009GB003583.CrossRefGoogle Scholar
  17. Global Environmental Monitoring System (GEMS) (2000). Ontario, Canada, United Nations Environment programme, Global Environmental Monitoring System, Freshwater Quality Program, Collaborating Centre for Freshwater Quality Monitoring and Assessment at the National Water Research Institute of Environment Canada., Accessed 10 Jan 2012.
  18. Guo, L., Zhang, J. Z., & Gueguen, C. (2004). Speciation and fluxes of nutrients (N, P, Si) from the upper Yukon River. Global Biogeochemical Cycles, 18, GB1038. 12 PP.Google Scholar
  19. Han, C. W., Xu, S. G., Liu, J. W., & Lian, J. J. (2010). Nonpoint-source nitrogen and phosphorous behavior and modeling in cold climate: a review. Water Science and Technology, 62(10), 2277–2285.CrossRefGoogle Scholar
  20. Heathwaite, A. L., Johnes, P. J., & Peters, N. E. (1996). Trends in nutrients. Hydrological Processes, 10, 263–293.CrossRefGoogle Scholar
  21. Hoffman, J. C., & Bronk, D. A. (2006). Interannual variation in stable carbon and nitrogen isotope biogeochemistry of the Mattaponi River, Virginia. Limnology and Oceanography, 51, 2319–2332.CrossRefGoogle Scholar
  22. Humborg, C., Conley, D. J., Rahm, L., Wulff, F., Cociasu, A., & Ittekkot, V. (2000). Silicon retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio, 29, 45–50.Google Scholar
  23. Humborg, C., Smedberg, E., Blomqvist, S., et al. (2004). Nutrient variation in boreal and subarctic Swedish rivers: landscape control of land–sea fluxes. Limnology and Oceanography, 49(5), 1871–1833.CrossRefGoogle Scholar
  24. Ileva, N. Y., Shibata, H., Satoh, F., Sasa, K., & Ueda, H. (2009). Relationship between the riverine nitrate–nitrogen concentration and the land use in the Teshio River watershed, North Japan. Sustainability Science, 4, 189–198.CrossRefGoogle Scholar
  25. Jha, P. K., Tiwari, J., Singh, U. K., Kumar, M., & Subramanian, V. (2009). Chemical weathering and associated CO2 consumption in the Godavari river basin, India. Chemical Geology, 264, 364–374.CrossRefGoogle Scholar
  26. Joseph, S., & Ouseph, P. P. (2010). Assessment of nutrients using multivariate statistical techniques in estuarine systems and its management implications: a case study from Cochin Estuary, India. Water and Environment Journal, 24, 126–132.CrossRefGoogle Scholar
  27. Kendall, C., Silva, S. R., & Kelly, V. J. (2001). Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrological Processes, 15, 1301–1346.CrossRefGoogle Scholar
  28. Kobayashi, J. (1961). A chemical study of the average quality and characteristics of river water of Japan (in Japanese). Ber. Ohara In St. Landwirtschaft. Biol. Okayama Univ 11:63-106.Google Scholar
  29. Kunii, D., & Saito, G. (2009). Relationships between land use and river nutrient in the river basins of Kitakami river and Ishikari river using remote sensing and GIS. J Integrat Field Sci, 6, 59–70.Google Scholar
  30. Lara, R. J., Rachold, V., Kattner, G., Hubberten, H. W., Guggenberger, G., Skoog, A., & Thomas, D. N. (1998). Dissolved organic matter and nutrients in Lena river, Siberian arctic, characteristics and distribution. Marine Chemistry, 59, 301–309.CrossRefGoogle Scholar
  31. Lima, M. C., Souza, M. F. L., Gilmara, F., Eca, G. F., & Silva, M. A. M. (2010). Export and retention of dissolved inorganic nutrients in the Cachoeira River, Iléhus, Bahia, Brazil. Journal of Limnology, 69, 138–145.CrossRefGoogle Scholar
  32. Liu, S. M., Zhang, J., Chen, H. T., Wu, Y., Xiong, H., & Zhang, Z. F. (2003). Nutrients in the Changjiang and its tributaries. Biogeochemistry, 62, 1–18.CrossRefGoogle Scholar
  33. Mariotti, A. (1986). Denitrification in groundwaters, principle and methods for its identification. A review. Journal of Hydrology, 88, 1–23.CrossRefGoogle Scholar
  34. Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., & Tardieux, P. (1981). Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant and Soil Science, 62, 413–430.CrossRefGoogle Scholar
  35. Meybeck, M. (1979). Concentrations des eaux fluviales en el’ ements ma- ‘jeurs et apports en solution aux oceans. Revue de Geologie Dynamique et de Geographie Physique, 21(3), 215–246.Google Scholar
  36. Meybeck, M. (1982). Carbon, nitrogen and phosphorous transport by world rivers. American Journal of Science, 282, 401–450.CrossRefGoogle Scholar
  37. Middelburg, J. J., & Nieuwenhuize, J. (1998). Carbon and nitrogen stable isotope in suspended matter and sediment from the Schelde Estuary. Marine Chemistry, 60, 217–225.CrossRefGoogle Scholar
  38. Millot, R., Gallardet, J., Dupre, B., & Allegre, C. J. (2003). Northern latitude chemical weathering rates: clues from the Mackenzie River Basin, Canada. Geochimica et Cosmochimica Acta, 67, 1305–1329.CrossRefGoogle Scholar
  39. Murayama, S., Komada, M., Baba, K., & Tsumura, S. (2001). Characteristics and the seasonal changes in water quality of small rivers in a rural agricultural catchment area. Japanese Journal of Soil Science and Plant Nutrition, 72, 409–419.Google Scholar
  40. Nagumo, T., & Hatano, R. (2000). Impact of nitrogen cycling associated with production and consumption of food on nitrogen pollution of stream water. Soil Science & Plant Nutrition, 46, 325–342.Google Scholar
  41. Nakatsugawa, M., Hamahara, Y. (2004). Long-term modeling of water quality for stagnated water area in snowy cold regions. 17th International Symposium on Ice Saint Petersburg, Russia. International Association of Hydraulic Engineering and Research.Google Scholar
  42. NIRS (National Institute of Radiological Sciences). (2007). Elemental concentration in the Japanese rivers 2002–2006 (pp. 3–93). Chiba: NIRS.Google Scholar
  43. Officer, C. B., & Ryther, J. H. (1980). The possible importance of silicon in marine eutrophication. Marine Ecology Progress Series, 3, 383–391.CrossRefGoogle Scholar
  44. Ohta, A., Imai, N., Terashima, S., & Tachibana, Y. (2005). Influence of surface geology and mineral deposits on the spatial distributions of elemental concentrations in the stream sediments of Hokkaido, Japan. Journal of Geochemical Exploration, 86, 86–103.CrossRefGoogle Scholar
  45. Pizarroa, J., Vergaraa, P. M., Rodrígueza, J. A., Sanhuezaa, P. A., & Castrob, S. A. (2010). Nutrients dynamics in the main river basins of the centre-southern region of Chile. Journal of Hazardous Materials, 175, 608–613.CrossRefGoogle Scholar
  46. Pourriot, R., & Meybeck, M. (1995). Limnologie Générale. Paris: Masson. 956 p.Google Scholar
  47. Redfield, A. C., Ketchum, B. H., & Richards, F. A. (1963). The influence of organisms on the composition of seawater. The sea (Vol. 2, pp. 26–77). New York: Wiley.Google Scholar
  48. Sharma, S. K., & Subramanian, V. (2010). Source and distribution of trace metals and nutrients in Narmada and Tapti river basins, India. Environmental Earth Sciences, 61, 1337–1352.CrossRefGoogle Scholar
  49. Shuiwang, D., Shen, Z., & Hongyu, H. (2000). Transport of dissolved inorganic nitrogen from the major rivers to estuaries in China. Nutrient Cycling in Agroecosystems, 57, 13–22.CrossRefGoogle Scholar
  50. Smart, M. M., Jones, J. R., & Sebaugh, J. L. (1985). Stream watershed relation in the Missouri Ozark plateau province. Journal of Environmental Quality, 14, 77–82.CrossRefGoogle Scholar
  51. Tabayashi, Y., & Yamamuro, M. (2009). Changes in the impact of anthropogenic effects on river water quality during the last 50 years in Japan. Wetlands Ecology and Management, 17, 409–415.CrossRefGoogle Scholar
  52. Tachibana, H., Yamamoto, K., Yoshizawa, K., & Magara, Y. (2001). Non-point pollution of Ishikari River, Hokkaido, Japan. Water Science and Technology, 44, 1–8.Google Scholar
  53. Tachibana, H., Matsuzawa, M., Suwa, Y., & Zhou, J. (2005). Land use/cover changes in the Kamikawa basin, Hokkaido, Japan, since (1898). Reports of the Taisetsuzan Institute of Science, 29, 37–56.Google Scholar
  54. The Ishikari River Local Head Office (2003) The Ishikari River. pp 58Google Scholar
  55. Townsend, S. A., Schult, J. H., Douglas, M. M., & Skinner, S. (2008). Does the Redfield ratio infer nutrient limitation in the macroalga Spirogyra fluviatilis? Freshwater Biology, 53, 509–520.CrossRefGoogle Scholar
  56. Turner, R. E., Rabalais, N. N., Justic, D., & Dortch, Q. (2003). Global patterns of dissolve N, P and Si in large rivers. Biogeochemistry, 64, 297–313.CrossRefGoogle Scholar
  57. Usui, T., Nagao, S., Yamamoto, M., Suzuki, K., Kudo, I., Montani, S., Noda, A., & Minagawa, M. (2006). Distribution and sources of organic matter in surficial sediments on the shelf and slope off Tokachi, western North Pacific, inferred from C and N stable isotopes and C/N ratios. Marine Chemistry, 98, 241–259.CrossRefGoogle Scholar
  58. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.CrossRefGoogle Scholar
  59. Vivien, M. H., Dierking, J., Banaru, D., Fontaine, M. F., & Arlhac, D. (2010). Seasonal variation in stable C and N isotope ratios of the Rhone river input to the Mediterranean Sea (2004–2005). Biogeochemistry, 100, 139–150.CrossRefGoogle Scholar
  60. Wada, E., & Hattori, A. (1978). Nitrogen isotopic effects in the assimilation of inorganic nitrogenous compounds. Geomicrobiology Journal, 1, 85–101.CrossRefGoogle Scholar
  61. Wafar, M. V. M., Corre, P. L., & Birrien, J. L. (1989). Transport of carbon, nitrogen and phosphorous in a Brittany river, France. Estuarine, Coastal and Shelf Science, 29, 489–500.CrossRefGoogle Scholar
  62. Wakamatsu, T., Konohira, E., Shindo, J., Yoshioka, T., Okamoto, K., Itaya, A., & Kim, M. S. (2006). Dissolved inorganic phosphate concentration in stream water in Japan and factor controlling the concentration. Journal of Japan Society on Water Environment, 29, 679–686.CrossRefGoogle Scholar
  63. Woli, K. P., Hayakawa, A., Nagumo, T., Kuramochi, K., & Hatano, R. (2004). Evaluating river water quality through land use analysis and N budget approaches in livestock farming areas. Science of the Total Environment, 329, 61–74.CrossRefGoogle Scholar
  64. Woli, K. P., Hayakawa, A., Nagumo, T., Imai, H., Ishiwata, T., & Hatano, R. (2008). Assessing the impact of phosphorous cycling on river water P concentration in Hokkaido. Soil Science & Plant Nutrition, 54, 310–317.CrossRefGoogle Scholar
  65. Xiao-niu, X. U., & Shibata, H. (2007). Landscape patterns of overstory litterfall and related nutrient fluxes in a cool-temperate forest watershed in northern Hokkaido, Japan. Journal of Forest Research, 18, 249–254.CrossRefGoogle Scholar
  66. Yazawa, M., Takatsuki, D., Wang, X., & Horiguchi, I. (1999). Relationships between recent land-use change and legal land-use classification in the area of greater Sapporo. Journal of the Faculty of Agriculture, Hokkaido University, 69, 31–45.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Graduate School of Environmental ScienceHokkaido UniversityHokkaidoJapan
  2. 2.Amity Institutes of Environmental SciencesAmity UniversityNoidaIndia

Personalised recommendations