Skip to main content

Advertisement

Log in

Combined Effects of Oil Concentration, Clay and Moisture Contents on Diffuse Reflectance Spectra of Diesel-Contaminated Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Removal of petroleum hydrocarbon (PHC) contamination that is hazardous and often prevalent in soils would benefit from a rapid detection technique. Visible and near-infrared spectroscopy (VIS-NIRS) has a large potential as a rapid detection technique for PHC in soils. Nevertheless, the combined influence of oil concentration, moisture content and clay content on soil reflectance spectra and the accuracy of the technique have yet received little attention. The objective of this study was to investigate the combined influence of oil concentration and moisture and clay contents on the spectral characteristics of diesel-contaminated soils and the quality of calibration models developed for polycyclic aromatic hydrocarbons (PAH) in soils using VIS-NIRS. With partial least-squares regression data from a systematic experimental design using 150 artificially contaminated soil samples, results showed that soil diffuse reflectance decreased with increasing oil concentration, clay and moisture contents. The trend was less defined in relation to moisture and clay due mainly to the interaction effects of the soil matrices as mediated by the oil. The PAH partial least squares cross-validation showed best performance with the lowest oil concentration and clay content at 20 % moisture with r 2 of 0.89, root mean square error of prediction of 0.201 mg/kg and ratio of the standard error of prediction to the standard deviation of the reference data in the validation set of 2.75. Analysis of variance showed that the interaction effects of oil concentration, moisture and/or clay content significantly (p < 0.05) affected the quality of the PAH models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

VIS-NIR:

Visible and near-infrared

TPH:

Total petroleum hydrocarbons

PAH:

Polycyclic aromatic hydrocarbons

PLSR:

Partial least squares regression

RMSEP:

Root mean square error of prediction

RMSECV:

Root-mean-square error of cross-validation

RPD:

Ratio of the standard error of prediction to the standard deviation of the reference data in the validation set

USEPA:

United States Environmental Protection Agency

PCA:

Principal component analysis

ANOVA:

Analysis of variance

References

  • Aske, N., Kallevik, H., & Sjoblom, J. (2001). Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude oils by means of infrared and near-infrared spectroscopy. Energy & Fuels, 15, 1304–1312.

    Article  CAS  Google Scholar 

  • Bray, J. G., Viscarra Rossel, R. A., & McBratney, A. B. (2010). Diagnostic screening of urban soil contaminants using diffuse reflectance spectroscopy. In R. A. Viscarra Rossel, A. B. McBratney, & B. Minasny (Eds.), Proximal soil sensing (pp. 191–199). Berlin: Springer.

    Chapter  Google Scholar 

  • Brown, D. J., Shepherd, K. D., Walsh, M. G., Dewayne Mays, M., & Reinsch, T. G. (2006). Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, 132, 273–290.

    Article  CAS  Google Scholar 

  • Cañasveras, J. C., Barrón, V., del Campillo, M. C., Torrent, J., & Gómez, J. A. (2010). Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma, 158, 78–84.

    Article  Google Scholar 

  • Chakraborthy, S., Weindorf, D. C., Zhu, Li, Y., B., Morgan, C. L. S., Ge, Y. & Gulbraith, J. (2012). Spectral reflectance variability from soil physicochemical properties in oil contaminated soils. Geoderma, 177–178, 80-89.

  • Chakraborty, S., Weindorf, D. C., Morgan, C. L. S., Ge, Y., Galbraith, J. M., Li, B., et al. (2010). Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy. Journal of Environmental Quality, 39, 1378–1387.

    Article  CAS  Google Scholar 

  • Demattê, J. A. M., Campos, R. C., Alves, M. C., Fiorio, P. R., & Nanni, M. R. (2004). Visible–NIR reflectance: a new approach on soil evaluation. Geoderma, 121, 95–112.

    Article  Google Scholar 

  • Dilawari, G., & Kaleita, A. (2006). Analysis of the influence of soil roughness, surface crust and soil moisture on spectral reflectance. In An American Society of Agricultural and Biological Engineers meeting presentation. Paper No. 061062. St. Joseph, MI: ASABE.

  • Forrester, S., Janik, L., & McLaughlin, M. (2010). An infrared spectroscopic test for total petroleum hydrocarbon (TPH) contamination in soils. In Proceedings of the 19 th world congress of soil science, soil solutions for a changing world (pp. 13–16), August 1–6. Brisbane, Australia.

  • Gomez, C., Viscarra Rossel, R. A., & McBratney, A. B. (2008). Soil organic carbon prediction by hyperspectral remote sensing and field vis–NIR spectroscopy: an Australian case study. Geoderma, 146, 403–411.

    Article  CAS  Google Scholar 

  • Gomez, C., Lagacherie, P., & Coulouma, G. (2008). Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma, 148, 141–148.

    Article  CAS  Google Scholar 

  • Graham, K. N. (1998). Evaluation of analytical methodologies for diesel fuel contaminants in soil. M.Sc. thesis, University of Manitoba, Canada.

  • Latimer, J. S., & Zheng, J. (2003). The sources, transport and fate of PAHs in the marine environment. In P. E. T. Douben (Ed.), PAHs: an eco-toxicological perspective (pp. 10–22). USA: Wiley.

    Google Scholar 

  • Maleki, M. R., Van Holm, L., Ramon, H., Merckx, R., De Baerdemaeker, J., & Mouazen, A. M. (2006). Phosphorus sensing for fresh soils using visible and near infrared spectroscopy. Biosystems Engineering, 95, 239–250.

    Article  Google Scholar 

  • Maleki, M. R., Mouazen, A. M., Ramon, H., & De Baerdemaeker, J. (2007). Optimisation of soil VIS-NIR sensor-based variable rate application system of soil phosphorus. Soil and Tillage Research, 94, 239–250.

    Article  Google Scholar 

  • Malle, H., & Fowlie, P. (1998). A Canadian interlaboratory comparison for analysis of petroleum hydrocarbons in soil. In: Proceedings of the second biennial international conference on chemical measurement and monitoring of the environment, EnviroAnalysis ’98 Conference (pp. 321–322), May 11–14. Ottawa, Canada.

  • Malley, D. F., Graham, K. N., & Webster, G. R. B. (1999). Analysis of diesel-contaminated soils by near-infrared reflectance spectroscopy and solid phase micro-extraction–gas chromatography. Journal of Soil Contamination, 8(4), 481–489.

    Article  CAS  Google Scholar 

  • Mouazen, A. M., De Baerdemaeker, J., & Ramon, H. (2005). Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil and Tillage Research, 80, 171–183.

    Article  Google Scholar 

  • Mouazen, A. M., Karoui, R., De Baerdemaeker, J., & Ramon, H. (2005). Classification of soil texture classes by using soil visible near infrared spectroscopy and factorial discriminant analysis techniques. Journal of Near Infrared Spectroscopy, 13, 231–240.

    Article  CAS  Google Scholar 

  • Mouazen, A. M., De Baerdemaeker, J., & Ramon, H. (2006). Effect of wavelength range on the measurement accuracy of some selected soil constituents using visual-near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 14, 189–199.

    Article  CAS  Google Scholar 

  • Mouazen, A. M., Karoui, R., Deckers, J., De Baerdemaeker, J., & Ramon, H. (2006). Characterization of soil water content using measured visible and near infrared spectra. Soil Science Society of America Journal, 70, 1295–1302.

    Article  CAS  Google Scholar 

  • Mouazen, A. M., Karoui, R., Deckers, J., De Baerdemaeker, J., & Ramon, H. (2007). Potential of visible and near-infrared spectroscopy to derive colour groups utilizing the Munsell soil colour charts. Biosystems Engineering, 97, 131–143.

    Article  Google Scholar 

  • Mouazen, A. M., Maleki, M. R., Cockx, L., Van Meirvenne, M., Van Holm, L. H. J., Merckx, R., et al. (2009). Optimum three-point linkage set up for improving the quality of soil spectra and accuracy of soil phosphorus measured using an on-line visible and near infrared sensor. Soil and Tillage Research, 103, 144–152.

    Article  Google Scholar 

  • Mouazen, A. M., Kuang, B., De Baerdemaeker, J., & Ramon, H. (2010). Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma, 158, 23–31.

    Article  CAS  Google Scholar 

  • Naes, T., Isaksson, T., Fearn, T., & Davies, T. (2002). A user friendly guide to multivariate calibration and classification. Chichester: NIR.

    Google Scholar 

  • Nocita, M., Stevens, A., Noon, C., & van Wesemael, B. (2012). Prediction of soil organic carbon for different levels of soil moisture using vis–NIR spectroscopy. Geoderma. doi:10.1016/j.geoderma.2012.07.020.

  • Okparanma, R. N., & Mouazen, A. M. (2013). Determination of total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbon (PAH) in soils: a review of spectroscopic and non-spectroscopic techniques. Applied Spectroscopy Reviews, 48(6), 458–486.

    Google Scholar 

  • Osborne, B. G., Fearn, T., & Hindle, P. H. (1993). Practical NIR spectroscopy—with applications in food and beverage analysis (2nd ed.). England: Longman Group.

    Google Scholar 

  • Pasquini, C. (2003). Near infrared spectroscopy: fundamentals, practical aspects and analytical applications. Journal of the Brazilian Chemical Society, 14(2), 198–219.

    Article  CAS  Google Scholar 

  • Risdon, G. C., Pollard, S. J. T., Brassington, K. J., McEwan, J. N., Paton, G. I., Semple, K. T., et al. (2008). Development of an analytical procedure for weathered hydrocarbon contaminated soils within a UK risk-based framework. Analytical Chemistry, 80(18), 7090–7096.

    Article  CAS  Google Scholar 

  • Schwartz, G., Ben-Dor, E., & Eshel, G. (2012). Quantitative analysis of total petroleum hydrocarbons in soils: comparison between reflectance spectroscopy and solvent extraction by 3 certified laboratories. Applied and Environmental Soil Science, 2012, 1–11.

    Article  Google Scholar 

  • Stenberg, B. (2010). Effects of soil sample pretreatments and standardized rewetting as interacted with sand classes on Vis–NIR predictions of clay and soil organic carbon. Geoderma, 158, 15–22.

    Article  CAS  Google Scholar 

  • Stenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., & Wetterlind, J. (2010). Visible and near infrared spectroscopy in soil science. In D. Sparks (Ed.), Advances in agronomy, 107 (pp. 163–215). USA: Springer.

    Chapter  Google Scholar 

  • Tekin, Y., Tumsavas, Z., & Mouazen, A. M. (2011). Effect of moisture content on prediction of organic carbon and pH using visible and near infrared spectroscopy. In International Conference on Agricultural Engineering—AgEng 2010: towards environmental technologies, Clermont-Ferrand, France, 6–8 September 2010, p. 386.

  • Viscarra Rossel, R. A., & Behrens, T. (2010). Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158, 46–54.

    Article  Google Scholar 

  • Viscarra Rossel, R. A., & McBratney, A. B. (1998). Laboratory evaluation of a proximal sensing technique for simultaneous measurement of soil clay and water. Geoderma, 85, 19–39.

    Article  Google Scholar 

  • Viscarra Rossel, R. A., McGlynn, R. N., & McBratney, A. B. (2006). Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy. Geoderma, 137, 70–82.

    Article  CAS  Google Scholar 

  • Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131, 59–75.

    Article  CAS  Google Scholar 

  • Viscarra Rossel, R. A., Cattle, S. R., Ortega, A., & Fouad, Y. (2009). In-situ measurement of soil colour, mineral composition and clay content by vis–NIR spectroscopy. Geoderma, 150, 253–266.

    Article  CAS  Google Scholar 

  • Wetterlind, J., Stenberg, B., & Söderström, M. (2010). Increased sample point density in farm soil mapping by local calibration of visible and near infrared prediction models. Geoderma, 156, 152–160.

    Article  CAS  Google Scholar 

  • Whalley, W. R., & Stafford, J. V. (1992). Real-time sensing of soil water content from mobile machinery: options for sensor design. Computer and Electronics in Agriculture, 7, 269–358.

    Article  Google Scholar 

  • Whiting, M. L., Li, L., & Ustin, S. L. (2004). Predicting water content using Gaussian model on soil spectra. Remote Sensing of Environment, 89, 535–552.

    Article  Google Scholar 

  • Williams, P. C., & Sobering, D. C. (1986). Attempts at standardization of hardness testing of wheat. II. The near-infrared reflectance method. Cereal Foods World, 31, 417–420.

    Google Scholar 

  • Workman, J., Jr., & Weyer, L. (2008). Practical guide to interpretive near-infrared spectroscopy. Boca Raton: CRC.

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Petroleum Technology Development Fund, Nigeria, for funding this research through financial assistance in the form of doctoral studentship. The Rivers State University of Science and Technology, Port Harcourt, Nigeria, also provided support through its Academic Staff Development Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul M. Mouazen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okparanma, R.N., Mouazen, A.M. Combined Effects of Oil Concentration, Clay and Moisture Contents on Diffuse Reflectance Spectra of Diesel-Contaminated Soils. Water Air Soil Pollut 224, 1539 (2013). https://doi.org/10.1007/s11270-013-1539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1539-8

Keywords

Navigation