Skip to main content

Response of Toxic Cyanobacterium Microcystis aeruginosa to Environmental Pollution

Abstract

A better understanding of the effect of anthropogenic pollution on the formation of toxic Microcystis blooms is particularly important in regions with large urban centres where rivers, lakes, and estuaries receive large quantities of contaminated domestic and industrial wastes. The response of the bloom-forming cyanobacteria Microcystis aeruginosa CALU 972 and CALU 973 from Russian Karelia to pollution was investigated. The contaminants caused compensatory-adaptive changes that led to the retention of cell viability in the cyanobacterial cells. The adaptation to metals and 1,2,4-triazole was realised due to photosystem changes and the enhanced production of organic compounds, such as proteins and exopolysaccharides. Nutrients caused a significant increase in biomass production by M. aeruginosa. The exposure of M. aeruginosa to nutrients and zinc stimulated growth and contributed to enhanced microcystin concentrations. Variants of microcystins responded differently to pollution. Contaminants had pronounced effects on microcystin RR levels but less effects on microcystin LR levels. Heavy metals, 1,2,4-triazole and nitrogen influenced microcystin concentrations by affecting both the growth of Microcystis and hepatotoxin release into the environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Berg, K., Skulberg, O. M., & Skulberg, R. (1987). Effects of decaying toxic blue-green algae on water quality — a laboratory study. Archiv für Hydrobiologie, 108, 549–563.

    CAS  Google Scholar 

  2. Bhaya, D., Schwarz, R. & Grossman, A. R. (2000). Molecular responses to environmental stress. In B. A Whitton & M. Potts (Eds.), The Ecology of Cyanobacteria (pp. 397–442). Dordrecht: Kluwer Academic.

  3. Black, I. T. (1974). Principles and techniques of scanning electron microscopy. Biological application. New York: Van Nostrand Reinhold Co.

    Google Scholar 

  4. Böttcher, G., Chorus, I., Ewald, S., Hintze, T., & Walz, N. (2001). Light limited growth and microcystin content of Planktothrix agardhii and Microcystis in turbidostats. In I. Chorus (Ed.), Cyanotoxins: occurrence, causes, consequences (pp. 115–133). Berlin: Springer-Verlag KG.

    Google Scholar 

  5. Brookes, J. D., & Ganf, G. G. (2001). Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light. Journal of Plankton Research, 23(12), 1399–1411.

    Article  Google Scholar 

  6. Bryant, D. A. (1996). The molecular biology of cyanobacteria (pp. 559–579). Amsterdam: KluwerAcademic publishers.

    Google Scholar 

  7. Chisholm, S. W., & Morel, F. M. M. (1991). What controls phytoplankton production in nutrient-rich areas of the open sea? Limnology & Oceanography, (Special Issue), 36(8), 1507–1511.

    Article  Google Scholar 

  8. Collected sanitary and hygienic standards and methods for control of hazardous substances in the environment. (1991). Moscow: Medicine (in Russian).

  9. De Philippis, R., Sili, C., Tassinato, G., Vincenzini, M., & Materassi, R. (1991). Effects of growth conditions on exopolysaccharide production by Cyanospira capsulata. Bioresource Technology, 38, 101–104.

    Google Scholar 

  10. Dietz, K. J., Heber, U., & Mimura, T. (1998). Modulation of the vacuolar H+-ATPase by adenylates as basis for the transient CO2-dependent acidification of the leaf vacuole upon illumination. Biochimica et Biophysica Acta, 1373, 87–92.

    Article  CAS  Google Scholar 

  11. Eullaffroy, P., & Vernet, G. (2003). The F 684/F 735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phytotoxicity in algae. Water Research, 37(9), 1983–1990.

    Article  CAS  Google Scholar 

  12. Falconer, I., Bartram, J., Chorus, I., Kuiper-Goodman, T., Utkilen, H., Burch, M., et al. (1999). Safe levels and safe practices. In I. Chorus & J. Bartram (Eds.), Toxic cyanobacteria in water – a guide to their public health consequences, monitoring and management (pp. 155–178). London: E&FN Spon.

    Google Scholar 

  13. Falconer, I. R. (2005). Cyanobacterial toxins of drinking water supplies: Cylindrospermopsins and microcystin. Florida: CRC Press, Boca Raton.

    Google Scholar 

  14. Fenderson, B. A., Eddy, E. M., & Hakomori, S.-I. (1990). Glycoconjugate expression during embryogenesis and its biological significance. BioEssays, 12(4), 173–179.

  15. Flaibani, A., Olsen, Y., & Painter, T. J. (1989). Polysaccharides in desert reclamation: compositions of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae. Carbohydrate Research, 190, 235–248.

    Google Scholar 

  16. Fujiki, H., Sueoka, E., & Suganuma, M. (1996). Carcinogenesis of microcystins. In M. F. Watanabe, K. Harada, W. W. Carmichael, H. Fujiki, et al. (Eds.), Toxic Microcystis (pp. 203–233). Florida: CRC Press, Boca Raton.

    Google Scholar 

  17. Giani, A., Bird, D. F., Prairie, Y. T., & Lawrence, J. F. (2005). Empirical study of cyanobacterial toxicity along a trophic gradient of lakes. Canadian Journal of Fisheries and Aquatic Sciences, 62, 2100–2109.

    Article  CAS  Google Scholar 

  18. Gouvea, S. P., Boyer, G. L., & Twiss, M. R. (2008). Influence of ultraviolet radiation, copper, and zinc on microcystin content in Microcystis aeruginosa (Cyanobacteria). Harmful Algae, 7, 194–205.

    Article  CAS  Google Scholar 

  19. Hayat, M. A. (1986). Basic techniques for transmission electron microscopy (pp. 232–264). London: Acad. Press.

    Book  Google Scholar 

  20. Heipierer, H. J., Keweloh, H., & Rehm, H.-J. (1991). Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Applied and Environmental Microbiology, 57, 1213–1217.

    Google Scholar 

  21. Herbert, D., Phipps, P. J., & Strange, R. E. (1971). Chemical analysis of microbial cells. In J. R. Norris & D. W. Ribbons (Eds.), Methods in Microbiology (pp. 209–374).: Academic Press.

  22. Hesse, K., & Kohl, J.-G. (2001). Effects of light and nutrient supply on growth and microcystin content of different strains of Microcystis aeruginosa. In I. Chorus (Ed.), Cyanotoxins: occurrence, causes, consequences (pp. 152–158). Berlin: Springer-Verlag.

    Google Scholar 

  23. Israel, Y. A. (2003). Review of environmental pollution in Russian Federation in 2002. Moscow: Roshydromet (in Russian).

    Google Scholar 

  24. Jähnichen, S., Petzoldt, T., & Benndorf, J. (2001). Evidence for control of microcystin dynamics in Bautzen Reservoir (Germany) by cyanobacterial population growth rates and dissolved inorganic carbon. Archiv für Hydrobiologie, 150, 177–196.

    Google Scholar 

  25. Jeffrey, S. W., & Humprhråy, G. E. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2), 191–194.

    CAS  Google Scholar 

  26. Jiang, Y., Ji, B., Wong, R. N. S., & Wong, M. H. (2008). Statistical study on the effects of environmental factors on the growth and microcystins production of bloom-forming cyanobacterium — Microcystis aeruginosa. Harmful Algae, 7, 127–136.

    Article  CAS  Google Scholar 

  27. Kim, I. S., Beaudette, L. A., Shim, J. H., Trevors, J. T., & Suh, Y. T. (2002). Environmental fate of the triazole fungicide propiconazole in a rice-paddy–soil lysimeter. Plant and Soil, 239, 321–331.

    Article  CAS  Google Scholar 

  28. Kiss, T., & Osipenko, O. (1994). Metal ion-induced permeability changes in cell membranes: a minireview. Cellular and Molecular Neurobiology, 14(6), 781–789.

    Article  CAS  Google Scholar 

  29. Kotak, B. G., Lam, A. K.-Y., Prepas, E. E., Kenefick, S. L., & Hrudey, S. E. (1995). Variability of the hepatotoxin microcystin-LR in hypereutrophic drinking water lakes. Journal of Phycology, 31, 248–263.

    Article  CAS  Google Scholar 

  30. Lawton, L. A., Edwards, C., & Codd, G. A. (1994). Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst, 119, 1525–1530.

    Article  CAS  Google Scholar 

  31. Long, B. M., Jones, G. J., & Orr, P. T. (2001). Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Applied and Environmental Microbiology, 67, 278–283.

    Article  CAS  Google Scholar 

  32. Lowry, O. H., Rosenrough, N. F., Farr, A. L., & Randall, K. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  33. Lukac, M., & Aegerter, R. (1993). Influence of trace metals on growth and toxin production of Microcystis aeruginosa. Toxicon, 31, 293–305.

    Article  CAS  Google Scholar 

  34. Moisander, P. H., Ochiai, M., & Lincoff, A. (2009). Nutrient limitation of Microcystis aeruginosa in northern California Klamath River reservoirs. Harmful Algae, 8, 889–897.

    Google Scholar 

  35. Oh, H.-M., Lee, S. J., Jang, M.-H., & Yoon, B.-D. (2000). Microcystin production by Microcystis aeruginosa in a phosphorous-limited chemostat. Applied and Environmental Microbiology, 66, 176–179.

    Article  CAS  Google Scholar 

  36. Paerl, H. W., Tucker, J., & Bland, P. T. (1983). Carotenoid enhancement and its role in maintaining blue-green algal (Microcystis aeruginosa) surface blooms. Limnology and oceanography, 28(5), 847–857.

    Article  CAS  Google Scholar 

  37. Parsons, T. R., & Strickland, J. D. H. (1963). Discussion of spectrophotometric determination of marine-plant pigments with revised equations for ascertaining chlorophylls and carotenoids. Journal of Marine Research, 21, 155–163.

    CAS  Google Scholar 

  38. Pearson, L. A., Hisbergues, M., Borner, T., Dittman, E., & Neilan, B. A. (2004). Inactivation of an ABC transporter gene, mcyH, results in loss of microcystin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Applied and Environmental Microbiology, 70, 6370–6378.

    Article  CAS  Google Scholar 

  39. Poliak, Y. M., Zaytseva, T. B., Petrova, V. N., & Medvedeva, N. G. (2011). Development of mass cyanobacteria species under heavy metals pollution. Hydrobiological Journal, 47(3), 75–90.

    Article  Google Scholar 

  40. Rai, L. C., Raizada, M., Mallick, N., Husaini, Y., Singh, A. K., & Dubey, S. K. (1990). Effect of four heavy metals on the biology of Nostoc muscorum. Biology of Metals, 2, 229–234.

    Article  CAS  Google Scholar 

  41. Rapala, J., Sivonen, K., Lyra, C., & Niemela, S. I. (1997). Variation of microcystin, cyanobacterial hepatotoxins, in Anabaena spp as a function of growth stimulation. Applied and Environmental Microbiology, 63, 2206–2212.

    Google Scholar 

  42. Senthilkumar, T., & Jeyachandran, S. (2006). Effect of salinity stress on the marine cyanobacterium Oscillatoria acuminata Gomont with reference to proline accumulation. Seaweed Research and Utilization, 28, 99–104.

    Google Scholar 

  43. Siegelman, H. W., & Kycia, J. H. (1978). Algal biliproteins. In J. A. Hellebust & J. S. Craigie (Eds.), Handbook of phycological methods, physiological and biochemical methods (pp. 72–78). Cambridge: Cambridge University Press.

    Google Scholar 

  44. Sivonen, K. (1990). Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Applied and Environmental Microbiology, 56(9), 2658–2666.

    CAS  Google Scholar 

  45. Sivonen, K., & Jones, G. (1999). Cyanobacterial toxins. In I. Chorus & J. Bartram (Eds.), Toxic cyanobacteria in water—a guide to their public health consequences, monitoring and management (pp. 41–111). London: E&FN Spon.

    Google Scholar 

  46. Spurr, A. R. (1969). A low viscosity exopy resin embedding medium for electron microscopy. Ultrastructure Research, 26(1), 31–43.

    Google Scholar 

  47. Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriological Reviews, 35, 171–205.

    CAS  Google Scholar 

  48. Status of the North West and North Russia environment. (1995). St. Petersburg: Nauka (in Russian).

    Google Scholar 

  49. Sunda, W. G. (1989). Trace metal interactions with marine phytoplankton. Journal of Biological Oceanography, 6, 411–442.

    Google Scholar 

  50. Turpin, D. H. (1991). Effects of inorganic N availability on algal photosynthesis and carbon metabolism. Phycology, 27(1), 14–20.

    Article  CAS  Google Scholar 

  51. Utkilen, H., & Gjølme, N. (1995). Iron-stimulated toxin production in Microcystis aeruginosa. Applied and Environmental Microbiology, 61, 797–800.

    CAS  Google Scholar 

  52. Vachali, P., Bhosale, P., & Bernstein, P. S. (2012). Microbial carotenoids. In J.-L. Barredo (Ed.), Microbial carotenoids from fungi: methods and protocols (pp. 41–59). New York: Humana Press.

    Chapter  Google Scholar 

  53. Van der Westhuizen, A. J., & Eloff, J. N. (1985). Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006). Planta, 163, 55–59.

    Article  Google Scholar 

  54. Vezie, C., Rapala, J., Vaitomaa, J., Seitsonen, J., & Sivonen, K. (2002). Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microbial Ecology, 43, 443–454.

    Article  CAS  Google Scholar 

  55. Watanabe, M. F., & Oishi, S. (1985). Effects of environmental factors on toxicity of a cyanobacterium Microcystis aeruginosa under culture conditions. Applied and Environmental Microbiology, 49, 1342.

    CAS  Google Scholar 

  56. WHO (2004). Guidelines for drinking water quality. Third edition, Volume 1, Recommendations. World Health Organization, Geneva: Sun Fung.

  57. Wiedner, C., Visser, P. M., Fastner, J., Metcalf, J. S., Codd, G. A., & Mur, L. R. (2003). Effects of light on the microcystin content of Microcystis strain PCC 7806. Applied and Environmental Microbiology, 69, 1475–1481.

    Google Scholar 

  58. Zaccaro, M. C., Salazar, C., Zulpa de Caire, G., Storni de Cano, M., & Stella, A. M. (2000). Lead toxicity in cyanobacterial porphyrin metabolism. Environmental Toxicology, 16, 61–67.

    Article  Google Scholar 

  59. Zhan, L., Sakamoto, H., Sakuraba, M., Wu, D.-S., Zhang, L.-S., Suzuki, T., et al. (2004). Genotoxicity of microcystin-LR in human lymphoblastoid TK6 cells. Mutation Research, 557, 1–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Oksana Ribalchenko for the electron microscopic examinations and Evgenii Protasov for the high-performance liquid chromatography analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yulia Polyak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Polyak, Y., Zaytseva, T. & Medvedeva, N. Response of Toxic Cyanobacterium Microcystis aeruginosa to Environmental Pollution. Water Air Soil Pollut 224, 1494 (2013). https://doi.org/10.1007/s11270-013-1494-4

Download citation

Keywords

  • Environmental pollution
  • Bloom-forming cyanobacteria
  • Microcystis
  • Hepatotoxins