Skip to main content
Log in

Using Epiphytic Lichens to Monitor Nitrogen Deposition Near Natural Gas Drilling Operations in the Wind River Range, WY, USA

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Rapid expansion of natural gas drilling in Sublette County, WY (1999–present), has raised concerns about the potential ecological effects of enhanced atmospheric nitrogen (N) deposition to the Wind River Range (WRR) including the Class I Bridger Wilderness. We sampled annual throughfall (TF) N deposition and lichen thalli N concentrations under forest canopies in four different drainages of the WRR. Measurements of TF N deposition and N concentrations in lichen thalli were highest at plots closest to drilling operations (<30 km). N concentrations in lichens decreased exponentially with distance from drilling activity. Highest TF N deposition, 4.1 kg ha−1 year−1, coincided with clear evidence of damage to lichen thalli. This deposition value is above estimated preindustrial deposition conditions (0.9 kg N ha−1 year−1) and regional critical loads (a deposition value below which ecosystem harm is prevented) of N deposition for sensitive ecosystem components. N concentrations in Usnea lapponica were strongly correlated (r = 0.96) with TF N deposition, demonstrating that elemental analysis of lichen material can be used to estimate TF N deposition. N concentrations below 1.35 % in U. lapponica and 1.12 % in Letharia vulpina were associated with estimated background conditions of 0.9 kg N ha−1 year−1. Additional lichen sampling in the Bridger Wilderness is recommended to further quantify and monitor spatial patterns of N deposition and to define areas of elevated N deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baron, J. S. (2006). Hindcasting nitrogen deposition to determine an ecological critical load. Ecological Application, 16(2), 433–439.

    Article  Google Scholar 

  • Baron, J. S., Driscoll, C. T., Stoddard, J. L., & Richer, E. E. (2011). Atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. BioScience, 61(8), 602–613.

    Article  Google Scholar 

  • Baron, J. S., Ojima, D. S., Holland, E. A., & Parton, W. J. (1994). Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: Implications for aquatic systems. Biogeochemistry, 27, 61–82.

    Article  Google Scholar 

  • Beem, K. B., Raja, S., Schwandner, F. M., Taylor, C., Lee, T., Sullivan, A. P., et al. (2010). Deposition of reactive nitrogen during the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study. Environmental Pollution, 158(3), 862–872.

    Article  CAS  Google Scholar 

  • Bishop, G. A., Peddle, A. M., & Stedman, D. H. (2010). On-road emission measurements of reactive nitrogen compounds from three California cities. Environmental Science and Technology, 44, 3616–3620.

    Article  CAS  Google Scholar 

  • Blett, T., Geiser, L., & Porter, E. (2003). Air pollution-related lichen monitoring in National Parks, Forests, and Refuges: guidelines for studies intended for regulatory and management purposes. NPS: USDA National Park Service Air Resources Division and US Fish & Wildlife Service Air Quality Branch, USDA Forest Service. D2202.

    Google Scholar 

  • Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Application, 20(1), 30–59.

    Article  CAS  Google Scholar 

  • Boonpragob, K., Nash, T. H. I. I. I., & Fox, C. A. (1989). Seasonal deposition patterns of acidic ions and ammonium to the lichen Ramalina menziesii Tayl. in southern California. Environmental and Experimental Botany, 29(2), 187–197.

    Article  CAS  Google Scholar 

  • Bowman, W.D., Baron, J.S., Geiser L.H., Fenn, M.E., Lilleskov, E.A. (2011). Ch 8. Northwestern forested mountains. From: Assessment of Nitrogen deposition effects and empirical critical loads of nitrogen for ecoregions of the United States. Gen. Tech. Rep. NRS-80. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 291 pp. (Ch 8—Northwestern Forested Mountains, 75–88).

  • Burns, D. A. (2003). Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and Southern Wyoming: A review and new analysis of past study results. Atmospheric Environment, 37, 921–932.

    Article  CAS  Google Scholar 

  • Cape, J. N., Sheppard, L. J., Crossley, A., van Dijk, N., & Tang, Y. S. (2010). Experimental field estimation of organic nitrogen formation in tree canopies. Environmental Pollution, 158(9), 2926–2933.

    Article  CAS  Google Scholar 

  • Cronan, C. S., & Reiners, W. A. (1983). Canopy processing of acidic precipitation by coniferous and hardwood forests in New England. Oecologia, 59(2–3), 216–223.

    Article  Google Scholar 

  • ESRI. (2009). Environmental Systems Research Institute. Redland, CA: Getting to Know ArcGIS desktop 9.3.

    Google Scholar 

  • Fenn, M. E., Baron, J. S., Allen, E. B., Rueth, H. M., Nydick, K. R., Geiser, L., et al. (2003). Ecological effects of nitrogen deposition in the Western United States. BioScience, 53(4), 404–420.

    Article  Google Scholar 

  • Fenn, M. E., Geiser, L., Bachman, R., Blubaugh, T. J., & Bytnerowicz, A. (2007). Atmospheric deposition inputs and effects on lichen chemistry and indicator species in the Columbia River Gorge, USA. Environmental Pollution, 146(1), 77–91.

    Article  CAS  Google Scholar 

  • Fenn, M. E., Jovan, S., Yuan, F., Geiser, L., Meixner, T., & Gimeno, B. S. (2008). Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environmental Pollution, 155, 492–511.

    Article  CAS  Google Scholar 

  • Fenn, M. E., & Poth, M. A. (2004). Monitoring nitrogen deposition in throughfall using ion exchange resin columns: A field test in the San Bernardino Mountains. Journal of Environmental Quality, 33(6), 2007–2014.

    Article  CAS  Google Scholar 

  • Fenn, M.E., Sickman, J.O., Bytnerowicz, A., Clow, D.W., Molotch, N.P., Pleim, J.E., Tonnesen, G.S., Weathers, K.C., Padgett, P.E., and Campbell., D.H. (2009). Methods for measuring atmospheric nitrogen deposition inputs in arid and montane ecosystems of western North America. pp. 179–228. In A.H. Legge (ed.), Developments in environmental science, Vol. 9: Air quality and ecological impacts: Relating sources to effects. Elsevier, Amsterdam.

  • Forest Inventory and Analysis Phase 3 Field Guide, version 5.1. (2011). http://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/2012/field_guide_p3_5-1_sec21_10_2011.pdf

  • Fowler, D. J., Cape, N., Coyle, M., Flechard, C., Kuylenstierna, J., Hick, K., et al. (1999). The global exposure of forests to air pollution. Water, Air, and Soil Pollution, 116(1–2), 5–32.

    Article  CAS  Google Scholar 

  • Frati, L., Brunialti, G., & Loppi, S. (2008). Effects of reduced nitrogen compounds on epiphytic lichen communities in Mediterranean Italy. Science of the Total Environment, 407(1), 630–637.

    Article  CAS  Google Scholar 

  • Frati, L., Santoni, S., Nicolardi, V., Gaggi, C., Brunialti, G., Guttova, A., et al. (2007). Lichen biomonitoring of ammonia emission and nitrogen deposition around a pig stockfarm. Environmental Pollution, 146(2), 311–316.

    Article  CAS  Google Scholar 

  • Gaige, E., Dail, D. B., Hollinger, D. Y., Davidson, E. A., Fernandez, I. J., Sievering, H., et al. (2007). Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature spruce–hemlock forest. Ecosystems, 10, 1133–1147.

    Article  CAS  Google Scholar 

  • Gaio-Oliveira, G., Dahlman, L., Palmqvist, K., & Máguas, C. (2005). Responses of the lichen Xanthoria parietina (L.) Th. Fr. to varying thallus nitrogen concentrations. The Lichenologist, 37(2), 171–179.

    Article  Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., et al. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320(5878), 889–892.

    Article  CAS  Google Scholar 

  • Geiser, L. (2004). Manual for monitoring air quality using lichens on national forests of the Pacific Northwest. USDA-Forest Service Pacific Northwest Region Technical Paper, R6-NR-AQ-TP-1-04. 126 p.

  • Geiser, L. H., Jovan, S. E., Glavich, D. A., & Porter, M. (2010). Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington forests, USA. Environmental Pollution, 158, 2412–2421.

    Article  CAS  Google Scholar 

  • Geiser, L., & Neitlich, P. N. (2007). Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environmental Pollution, 145, 203–218.

    Article  CAS  Google Scholar 

  • Grenon, J., Svalberg, T., Porwoll, T., Story M. (2010). Lake and bulk sampling chemistry, NADP, and IMPROVE air quality data analysis on the Bridger–Teton National Forest (USFS Region 4). Gen. Tech. Rep. RMRS-GTR-248WWW. Fort Collins, CO, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 49 pp.

  • Horii, C. V., Munger, J. W., Wofsy, S. C., Zahniser, M., Nelson, D., & McManus, J. B. (2006). Atmospheric reactive nitrogen concentration and flux budgets at a Northeastern U.S. forest site. Agricultural and Forest Meteorology, 136, 159–174.

    Article  Google Scholar 

  • Howarth, R. W. (2008). Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae, 8(1), 14–20.

    Article  CAS  Google Scholar 

  • Howarth, R. W., Walker, D., & Sharpley, A. (2002). Sources of nitrogen pollution to coastal waters of the United States. Estuaries, 25(4), 656–676.

    Article  CAS  Google Scholar 

  • Ingersoll, G. P., Mast, M. A., Campbell, D. H., Clow, D. W., Nanus, L., & Turk, J. T. (2008). Trends in snowpack chemistry and comparison to National Atmospheric Deposition Program Results for the Rocky Mountains, US 1993–2004. Atmospheric Environment, 42(24), 6098–6113.

    Article  CAS  Google Scholar 

  • Jovan, S. (2008). Lichen bioindication of biodiversity, air quality, and climate: Baseline results from monitoring in Washington, Oregon, and California. USDA-FS, PNW Research Station. General Technical Report: PNW-GTR-737

  • Jovan, S., & Carlberg, T. (2007). Nitrogen content of Letharia vulpina tissue from forests of the Sierra Nevada. California: geographic patterns and relationship to ammonia estimates and climate. Environment Monitoring Assessment, 129, 243–251.

    Article  CAS  Google Scholar 

  • Jovan, S., Riddell, J., Padgett, P. A., & Nash, T. H., III. (2012). Eutrophic lichens respond to multiple forms of N: implications for critical levels and critical loads research. Ecological Applications, 22(7), 1910–1922.

    Article  Google Scholar 

  • Matejko, M., Dore, A. J., Hall, J., Dore, C. J., Blas, M., Kryza, M., et al. (2009). The influence of long term trends in pollutant emissions on deposition of sulphur and nitrogen exceedance of critical loads in the United Kingdom. Environmental Science and Policy, 12(7), 882–896.

    Article  CAS  Google Scholar 

  • Mitchell, R. J., Truscot, A. M., Leith, I. D., Cape, J. N., van Dijk, N., Tang, Y. S., et al. (2005). A study of the epiphytic communities of Atlantic oak woods along an atmospheric nitrogen deposition gradient. Journal of Ecology, 93(3), 482–492.

    Article  CAS  Google Scholar 

  • Munzi, S., Pisani, T., Paoli, L., & Loppi, S. (2010). Time- and dose-dependency of the effects of nitrogen pollution on lichens. Ecotoxicology and Environmental Safety, 73(7), 1785–1788.

    Article  CAS  Google Scholar 

  • Naftz, D. L., Schuster, P. F., & Johnson, C. A. (2011). A 50-year record of NOx and SO2 sources in precipitation in the Northern Rocky Mountains, USA. Geochemical Transactions, 12(4), 1–10.

    Google Scholar 

  • National Atmospheric Deposition Program. (2011). National Atmospheric Deposition Program 2010 Annual Summary. NADP Data Report 2011–01. University of Illinois at Urbana–Champaign, IL: Illinois State Water Survey.

    Google Scholar 

  • National Park Service, Air Resource Division. (2010). Air quality in national parks: 2009 annual performance and progress report. National Park Service, Denver Colorado: Natural Resource Report NPS/NRPC/ARD/NRR—2010/266.

    Google Scholar 

  • Nilsson, J., & Grennfelt, P. (Eds.). (1988). Critical loads for sulphur and nitrogen. Nord 1988 (97th ed.). Copenhagen, Denmark: Nordic Council of Ministers.

    Google Scholar 

  • Pardo, L. H., Robin-Abbott, M. J., & Driscoll, C. T. (Eds.). (2011). Assessment of nitrogen deposition effects and empirical critical loads of nitrogen for ecoregions of the United States. Gen. Tech. Rep. NRS-80. Newtown Square, PA: U.S. Department of Agriculture Forest Service, Northern Research Station. 291 pp.

    Google Scholar 

  • R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

  • Riddell, J., Nash, T. H. I. I. I., & Padgett, P. (2008). The effect of HNO3 gas on the lichen Ramalina menziesii. Flora, 203(1), 47–54.

    Article  Google Scholar 

  • Rubasinghege, G., Spak, S. N., Stanier, C. O., Carmichael, G. R., & Grassian, V. H. (2011). Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate. Environmental Science and Technology, 45(7), 2691–2697.

    Article  CAS  Google Scholar 

  • Rueth, H. M., & Baron, J. S. (2002). Differences in Englemann spruce forests biogeochemistry east and west of the Continental Divide in Colorado, USA. Ecosystems, 5, 45.57.

    Article  Google Scholar 

  • Saros, J. E., Clow, D. W., Blett, T., & Wolfe, A. P. (2010). Critical nitrogen deposition in high elevation lakes of the Western US inferred from paleolimnological records. Water, Air, and Soil Pollution, 216, 193–202.

    Article  Google Scholar 

  • Schlesinger, W. H. (2009). On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 106, 203–208.

    Article  CAS  Google Scholar 

  • Sheppard, L. J., Leith, I. D., Mizunuma, T., Cape, J. N., Crossley, A., Leeson, S., et al. (2011). Dry deposition of ammonia gas drives species change faster than we deposition of ammonium ions: Evidence from a long-term field manipulation. Global Change Biology, 17(12), 3589–3607.

    Article  Google Scholar 

  • Simkin, S. M., Lewis, D. N., Weathers, K. C., Lovett, G. M., & Schwarz, K. (2004). Determination of sulfate, nitrate, and chloride in throughfall using ion-exchange resins. Water, Air, and Soil Pollution, 153, 343–354.

    Article  CAS  Google Scholar 

  • Sparrius, L. B. (2007). Response of epiphytic lichen communities to decreasing ammonia air concentrations in a moderately polluted area of The Netherlands. Environmental Pollution, 146(2), 375–379.

    Article  CAS  Google Scholar 

  • Strait, R., Roe, S., Bailie, A., Lindquist, H., Jamison, A. (2008). Idaho greenhouse gas inventory and reference case projections 1990–2020. Center for Climate Strategies.

  • Svalberg, T., & Porwoll, T. (2002). Bridger–Teton National Forest wind river mountains air quality monitoring program methods Manual. USDA-FS Intermountain Region, Bridger–Teton NF in-house publication

  • Svalberg, T., & Porwoll, T. (2008). Wind River Bulk Deposition Program Bridger–Teton National Forest Summary of 2007 and 2008 Data. USDA-FS Intermountain Region, Bridger-Teton NF in-house publication.

  • Sverdrup, H., McDonnell, T. C., Sullivan, T. J., Nihlgård, B., Belyazid, S., & Rihm, B. (2012). Testing the feasibility of using the ForSAFE-VEG model to map the critical load of nitrogen to protect plant biodiversity in the Rocky Mountains Region, USA. Water, Air, and Soil Pollution, 223(1), 371–387.

    Article  CAS  Google Scholar 

  • Twigg, M. M., House, E., Thomas, R., Whitehead, J., Phillips, G. J., Famulari, D., et al. (2011). Surface/atmosphere exchange and chemical interactions of reactive nitrogen compounds above a manured grassland. Agricultural and Forest Meteorology, 151(12), 1488–1503.

    Article  Google Scholar 

  • UTDEQ. (2009). http://www.airquality.utah.gov/.

  • van Dobben, H. F., & ter Braak, C. J. F. (1999). Ranking of epiphytic lichen sensitivity to air pollution using survey data: a comparison of indicator scales. The Lichenologist, 31(1), 27–39.

    Google Scholar 

  • van Herk, C. M. (1999). Mapping ammonia pollution with epiphytic lichens in the Netherlands. The Lichenologist, 31(1), 9–20.

    Google Scholar 

  • van Herk, C. M., Mathijssen-Spiekman, E. A. M., & de Zwart, D. (2003). Long distance nitrogen air pollution effects on lichens in Europe. The Lichenologist, 35(4), 347–359.

    Article  Google Scholar 

  • Williams, M. W., & Tonnessen, K. A. (2000). Critical loads for inorganic nitrogen deposition in the Colorado Front Range, USA. Ecological Applications, 10, 1648–1665.

    Article  Google Scholar 

  • Wyoming Department of Environmental Quality. (2011a). Wyoming air quality monitoring network boulder: first quarter January 1, 2011–March 31, 2011. Fort Collins: Air Resource Specialists, Inc. CO. 246.

    Google Scholar 

  • Wyoming Department of Environmental Quality. (2011b). Daniel South: ambient PM10, ozone, nitrogen dioxide, and meteorological monitoring: 1 st Quarter Report. Air Science. Sheridan, WY: Inter-Mountain Laboratories, Inc. 138.

    Google Scholar 

  • Yellowstone Center for Resources. (2011). Yellowstone National Park: Natural Resource Vital Signs. National Park Service. Wyoming: Mammoth Hot Springs. YCR-2011-07.

    Google Scholar 

Download references

Acknowledgments

This project was funded by the Forest Inventory and Analysis Program — RMRS (Grant # 09-JV-11221638-323). We thank Adam McMurray, Ted Porwoll, Becca Berzof, David Brockett, Adam Lunsford, and the BTNF fish crew for helping with field work, and the UMN Research and Analytical Laboratory for elemental analysis. We are also grateful to Terry Svalberg, Mark Story, Ted Porwoll, and Andrea Davidson for support, advice, and resource use. And finally many thanks to Doug Glavich, Terry Svalberg, and Adam McMurray for reviewing the document and providing useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill A. McMurray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMurray, J.A., Roberts, D.W., Fenn, M.E. et al. Using Epiphytic Lichens to Monitor Nitrogen Deposition Near Natural Gas Drilling Operations in the Wind River Range, WY, USA. Water Air Soil Pollut 224, 1487 (2013). https://doi.org/10.1007/s11270-013-1487-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1487-3

Keywords

Navigation