Skip to main content
Log in

Performance Evaluation of a Low-Cost Microbial Fuel Cell Using Municipal Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A low-cost microbial fuel cell (MFC) with a brush-shaped anode was constructed with low-cost materials and operated in a fed-batch mode using wastewater as a substrate. The operational performance of the MFC was evaluated considering the organic matter removal, coulombic efficiencies, and current and power densities. Its relative performance to cost was evaluated considering a MFC with platinum/carbon cathode. It was observed that the organic matter removal efficiency was up to 80 % and the coulombic efficiencies varied from 3.5 to 5.7 %. Maximum average voltages and power and current densities of 207 ± 30 mV, 9.2 ± 2.4 mW m−2, and 56.8 ± 14.9 mA m−2 were obtained, respectively. It was observed that the low-cost MFC produced higher power and current densities per dollar when compared to a MFC using platinum-catalyzed electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aelterman, P., Versichele, M., Marzorati, M., Boon, N., & Verstraete, W. (2008). Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresource Technology, 99, 8895–8902.

    Article  CAS  Google Scholar 

  • APHA/AWWA/WEF. (2005). Standard methods for the examination of water and wastewater (21st ed.). Baltimore: Port City Press.

    Google Scholar 

  • Cheng, S., & Logan, B. E. (2011). Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresource Technology, 102, 4468–4473.

    Article  CAS  Google Scholar 

  • Cheng, S., Liu, H., & Logan, B. E. (2006). Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environmental Science and Technology, 40, 364–369.

    Article  CAS  Google Scholar 

  • Deng, Q., Li, X., Zuo, J. E., Logan, B. E., & Ling, A. (2009). Power generation using an activated carbon fiber felt (ACFF) cathode in an upflow microbial fuel cell. Journal of Power Sources, 195, 1130–1135.

    Article  Google Scholar 

  • Dong, H., Yu, H., Wang, X., Zhou, Q., & Feng, J. (2012). A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells. Environmental Science and Technology, 46, 13009–13015.

    Article  CAS  Google Scholar 

  • Fan, Y., Hu, H., & Liu, H. (2007). Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources, 171, 348–354.

    Article  CAS  Google Scholar 

  • Feng, Y., Yang, Q., Wang, X., & Logan, B. E. (2009). Treatment of graphite fiber brush anodes for improving power generation in air-cathode microbial fuel cells. Journal of Power Sources, 195, 1841–1844.

    Article  Google Scholar 

  • Freguia, S., Rabaey, K., Keller, J. (2007). Competition and interaction between fermentation and electricity generation at microbial fuel cell anodes. Proceedings of the 11th anaerobic digestion congress, 23–27 September 2007, Brisbane, Australia.

  • He, Z., & Angenent, L. T. (2006). Application of bacterial biocathodes in microbial fuel cells. Electroanalysis, 18, 2009–2015.

    Article  CAS  Google Scholar 

  • Hosseini, M. G., & Ahadzadeh, I. (2012). A dual-chambered microbial fuel cell with Ti/nano-TiO2/Pd nano-structure cathode. Journal of Power Sources, 220, 292–297.

    Article  CAS  Google Scholar 

  • Ieropoulos, I., Greenman, J., & Melhuish, C. (2008). Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. International Journal of Energy Research, 32, 1228–1240.

    Article  CAS  Google Scholar 

  • Ieropoulos, I., Winfield, J., & Greenman, J. (2010). Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cell. Bioresource Technology, 101, 3520–3525.

    Article  CAS  Google Scholar 

  • Jadhav, G. S., & Ghangrekar, M. M. (2009). Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technology, 100, 717–723.

    Article  CAS  Google Scholar 

  • Liu, H., & Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science and Technology, 38, 4040–4046.

    Article  CAS  Google Scholar 

  • Liu, H., Ramnarayanan, R., & Logan, B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science and Technology, 38, 2281–2285.

    Article  CAS  Google Scholar 

  • Liu, H., Cheng, S., & Logan, B. (2005). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science and Technology, 39, 658–662.

    Article  CAS  Google Scholar 

  • Logan, B. E. (2010). Scaling up microbial fuel cells and other bioelectrochemical systems. Applied Microbiology and Biotechnology, 85, 1665–1671.

    Article  CAS  Google Scholar 

  • Logan, B. E., Murano, C., Scott, K., Gray, N. D., & Head, I. M. (2005). Electricity generation from cysteine in a microbial fuel cell. Water Research, 39, 942–952.

    Article  CAS  Google Scholar 

  • Logan, B. E., Hammelers, B., Rozendal, R., Schöder, U., Keller, J., Freguia, S., et al. (2006). Microbial fuel cells: methodology and technology. Environmental Science and Technology, 14, 5181–5192.

    Article  Google Scholar 

  • Lovley, D. R., & Phillips, E. J. P. (1988). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 54, 1472–1480.

    CAS  Google Scholar 

  • Pham, T. H., Aelterman, P., & Verstraete, W. (2009). Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends in Biotechnology, 27, 168–178.

    Article  CAS  Google Scholar 

  • Rismani-Yazdi, H., Christy, A. D., Carver, S. M., Yu, Z., Dehority, B. A., & Tuovinen, O. H. (2011). Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells. Bioresource Technology, 102, 278–283.

    Article  CAS  Google Scholar 

  • Rozendal, R. A., Hamelers, H. V. M., Euverink, G. J. W., Metz, S. J., & Buisman, C. J. N. (2006). Principle and perspectives of hydrogen production through biocatalyzed electrolysis. International Journal of Hydrogen Energy, 31, 1632–1640.

    Article  CAS  Google Scholar 

  • Rozendal, R. A., Leone, E., Keller, J., & Rabaey, K. (2009). Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochemistry Communications, 11, 1752–1755.

    Article  CAS  Google Scholar 

  • Sacco, N. J., Figuerola, E. L. M., Bonetto, M. C., Erijman, L., & Cortón, E. (2012). Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells. Bioresource Technology, 126, 328–335.

    Article  CAS  Google Scholar 

  • Schröder, U., Harnish, F. (2010). Electrochemical losses. In Rabaey k., Angenet L, Schöder U. and Keller J (Eds.) Bioelectrochemical systems from extracellular electron transfer to biotechnological application. IWA Publishing, London.

  • Schröder, U., Niessen, J., & Scholz, F. (2003). A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angw Chem Ind Ed, 42, 2880–2883.

    Article  Google Scholar 

  • Wang, X., Cheng, S., Feng, Y., Merrill, M. D., Saito, T., & Logan, B. E. (2009). The use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environmental Science and Technology, 43, 6870–6874.

    Article  CAS  Google Scholar 

  • Wei, B., Tokash, J. C., Chen, G., Hickner, M. A., & Logan, B. E. (2012). Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells. RSC Advances, 2, 12751–12758.

    Article  CAS  Google Scholar 

  • Zhang, Y., Sun, J., Hu, Y., Li, S., & Xu, Q. (2012). Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials International. International Journal of Hydrogen Energy, 37, 16935–16942.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank DGAPA-UNAM (project PAPIIT IN104710) for the financial support. Jaime Perez and Gloria Moreno are acknowledged for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Buitrón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buitrón, G., Cervantes-Astorga, C. Performance Evaluation of a Low-Cost Microbial Fuel Cell Using Municipal Wastewater. Water Air Soil Pollut 224, 1470 (2013). https://doi.org/10.1007/s11270-013-1470-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1470-z

Keywords

Navigation