Skip to main content

A Comparative Study of Immobilization Techniques for Photocatalytic Degradation of Rhodamine B using Nanoparticles of Titanium Dioxide

Abstract

The use of aqueous suspension of nanoparticles of titanium dioxide for photocatalytic removal of pollutants is not suitable for industrial applications due to the inconvenient and expensive separation of nanoparticles of titanium dioxide for reuse. The nanosized titanium dioxide needs to be immobilized on the support for improving the efficiency and economics of the photocatalytic process. In the present paper, nanoparticles of titanium dioxide have been immobilized on the surface of the support using three different techniques. The immobilized films of titanium dioxide have been characterized using X-ray diffraction and scanning electron microscopy to notice any change in the phase composition and photocatalytic properties of the titanium dioxide after immobilization on the support. A photocatalytic test has been performed under similar reaction conditions to compare the photocatalytic performance of the films of immobilized titanium dioxide prepared using different techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alfano, O. M., Bahnemann, D., Cassano, A. E., Dillert, R., & Goslich, R. (2000). Photocatalysis in water environments using artificial and solar light. Catalysis Today, 58, 199–230.

    Article  CAS  Google Scholar 

  2. Alinsafi, F., Evenou, E. M., Abdulkarim, M. N., Pons, O., Zahraa, A., Benhammou, A., et al. (2007). Treatment of textile industry wastewater by supported photocatalysis. Dyes and Pigments, 74, 439–445.

    Article  CAS  Google Scholar 

  3. Ang, E. L., Zhao, H., & Obbard, J. P. (2005). Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme and Microbial Technology, 37, 487–496.

    Article  CAS  Google Scholar 

  4. Bayer, P., Heuer, E., Karl, U., & Finkel, M. (2005). Economical and ecological comparison of granular activated carbon (GAC) adsorber refill strategies. Water Research, 39, 1719–1728.

    Article  CAS  Google Scholar 

  5. Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chemical Reviews, 107, 2891–2959.

    Article  CAS  Google Scholar 

  6. Daneshvar, N., Khataee, A. R., Salari, D., & Niaei, A. (2006). Photocatalytic degradation of the herbicide erioglaucine in the presence of nanosized titanium dioxide: Comparison and modeling of reaction kinetics. Journal of Environmental Science and Health. Part. B, 41, 1273–1290.

    Article  CAS  Google Scholar 

  7. Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93, 341–357.

    Article  CAS  Google Scholar 

  8. Fujishima, A., & Zhang, X. (2006). Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus Chimie, 9, 750–760.

    Article  CAS  Google Scholar 

  9. Galindo, C., Jacques, P., & Kalt, A. (2001). Photooxidation of the phenylazonaphthol AO20 on TiO2: Kinetic and mechanistic investigations. Chemosphere, 45, 997–1005.

    Article  CAS  Google Scholar 

  10. Herrmann, J. M. (2005). Heterogeneous photocatalysis: State of the art and present applications. Topics in Catalysis, 34, 49–65.

    Article  CAS  Google Scholar 

  11. Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69–96.

    Article  CAS  Google Scholar 

  12. Khataee, A. R., Pons, M. N., & Zahraa, O. (2009). Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure. Journal of Hazardous Materials, 168, 451–457.

    Article  CAS  Google Scholar 

  13. Kitano, M., Matsuoka, M., Ueshima, M., & Anpo, M. (2007). Recent developments in titanium oxide-based photocatalysts. Applied Catalysis A: General, 325, 1–14.

    Article  CAS  Google Scholar 

  14. Kumar, J., & Bansal, A. (2012). Photocatalytic degradation of amaranth in aqueous solution catalyzed by immobilized nanoparticles of titanium dioxide. International Journal of Environmental Science and Technology, 9, 479–484.

    Article  CAS  Google Scholar 

  15. Linsebigler, L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 surfaces: Principles, mechanisms and selected results. Chemical Reviews, 95, 735–758.

    Article  CAS  Google Scholar 

  16. Litter, M. I. (1999). Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environment, 23, 89–114.

    Article  CAS  Google Scholar 

  17. Mills, A., & Hunte, S. L. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108, 1–35.

    Article  CAS  Google Scholar 

  18. Mishra, S., Meda, V., Dalai, A. K., McMartin, D. W., Headley, J. V., & Peru, K. M. (2010). Photocatalysis of naphthenic acids in water. Journal of Water Resource and Protection, 2, 644–650.

    Article  CAS  Google Scholar 

  19. Natarajan, T. S., Natarajan, K., Bajaj, H. C., & Tayade, R. J. (2011). Energy efficient UV-LED source and TiO2 nanotube array-based reactor for photocatalytic application. Industrial and Engineering Chemistry Research, 50, 7753–7762.

    Article  CAS  Google Scholar 

  20. Natarajan, T. S., Thomas, M., Natarajan, K., Bajaj, H. C., & Tayade, R. J. (2011). Study on UV-LED/TiO2 process for degradation of rhodamine B dye. Chemical Engineering Journal, 169, 126–134.

    Article  CAS  Google Scholar 

  21. Noorjahan, M., Reddy, M. P., Kumari, V. D., Lavedrine, B., Boule, P., & Subrahmanyam, M. (2003). Photocatalytic degradation of H-acid over a novel TiO2 thin film fixed bed reactor and in aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 156, 179–187.

    Article  CAS  Google Scholar 

  22. Parra, S., Sarria, V., Malato, S., Peringer, P., & Pulgarin, C. (2000). Photochemical versus coupled photochemical–biological flow system for the treatment of two biorecalcitrant herbicides: Metobromuron and isoproturon. Applied Catalysis B: Environmental, 27, 153–168.

    Article  CAS  Google Scholar 

  23. Pirkanniemi, K., & Sillanpaa, M. (2002). Heterogeneous water phase catalysis as an environmental application: A review. Chemosphere, 48, 1047–1060.

    Article  CAS  Google Scholar 

  24. Sano, T., Puzenat, E., Guillard, C., Geantet, C., & Matsuzawa, S. (2008). Degradation of C2H2 with modified-TiO2 photocatalysts under visible light irradiation. Journal of Molecular Catalysis A: Chemical, 284, 127–133.

    Article  CAS  Google Scholar 

  25. Slokar, Y. M., & Marechal, A. M. L. (1998). Methods of decoloration of textile wastewaters. Dyes and Pigments, 37, 335–356.

    Article  CAS  Google Scholar 

  26. So, W. W., Park, S. B., Kim, K. J., Shin, C. H., & Moon, S. J. (2001). The crystalline phase stability of titania particles prepared at room temperature by sol–gel method. Journal of Material Science, 36, 4299–4305.

    Article  CAS  Google Scholar 

  27. Sun, H., Ullah, R., Chong, S., Ang, H. M., Tade, M. O., & Wang, S. (2011). Room-light-induced indoor air purification using an efficient Pt/N-TiO2 photocatalyst. Applied Catalysis B: Environmental, 108, 127–133.

    Article  Google Scholar 

  28. Tayade, R. J., Kulkarni, R. G., & Jasra, R. V. (2006). Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2. Industrial and Engineering Chemistry Research, 45, 922–927.

    Article  CAS  Google Scholar 

  29. Toor, A. P., Verma, A., Jotshi, C. K., Bajpai, P. K., & Singh, V. (2006). Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor. Dyes and Pigments, 68, 53–60.

    Article  CAS  Google Scholar 

  30. Tunay, O., Kabdasli, I., Eremektar, G., & Orhon, D. (1996). Color removal from textile waste waters. Water Science and Technology, 34, 9–16.

    Article  CAS  Google Scholar 

  31. Xu, T., Song, C., Liu, Y., & Han, G. (2006). Band structures of TiO2 doped with N, C and B. Journal of Zhejiang University Science, 7, 299–303.

    Article  CAS  Google Scholar 

  32. Yates, T., & Thompson, T. L. (2006). Surface science studies of the photoactivation of TiO2—new photochemical processes. Chemical Reviews, 106, 4428–4453.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jatinder Kumar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, J., Bansal, A. A Comparative Study of Immobilization Techniques for Photocatalytic Degradation of Rhodamine B using Nanoparticles of Titanium Dioxide. Water Air Soil Pollut 224, 1452 (2013). https://doi.org/10.1007/s11270-013-1452-1

Download citation

Keywords

  • Advanced oxidation processes (AOPs)
  • Photocatalysis
  • Titanium dioxide
  • Photocatalytic activity