Skip to main content

Advertisement

Log in

Entrapped Peat in Alginate Beads as Green Adsorbent for the Elimination of Dye Compounds from Vinasses

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

It is known that peat can be a potential adsorbent to remove contaminants from wastewaters. When raw peat is used, many limitations exist: Natural peat has a low mechanical strength, high affinity for water, poor chemical stability and tendency to shrink and/or swell. In this work, in order to obtain a more manageable substrate, to be used as adsorbent, peat was entrapped in calcium alginate beads. BoxBehnken factorial design was used to obtain the best condition for the immobilization of peat in calcium alginate beads. The independent variables studied were: peat concentration, sodium alginate concentration and calcium chloride concentration, whereas the dependent variables studied were based on the variation of colour parameters after the treatment of vinasses with entrapped peat. High colour reductions can be achieved using entrapped peat formulated by mixing 2 % of peat with 3 % of sodium alginate and pumped it on calcium chloride (0.05 M).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aghakhani, A., Mousavi, S. F., Mostafazadeh-Fard, B., Rostamian, R., & Seraji, M. (2011). Application of some combined adsorbents to remove salinity parameters from drainage water. Desalination, 275(1–3), 217–223.

    Article  CAS  Google Scholar 

  • Anjaneyulu, Y., Sreedhara Chary, N., & Samuel Suman Raj, D. (2005). Decolourization of industrial effluents—available methods and emerging technologies—a review. Reviews in Environmental Science and Biotechnology, 4(4), 245–273.

    Article  CAS  Google Scholar 

  • Berns, R. S. (2000). Billmeyer and Saltzman’s principles of color technology (3rd ed.). New York: Wiley.

    Google Scholar 

  • Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965–977.

    Article  CAS  Google Scholar 

  • Box, G. E. P., & Behnken, D. W. (1960). Simplex-sum designs—a class of 2nd order rotatable designs derivable of those of 1st order. Annals of Mathematical Statistics, 31(4), 838–864.

    Article  Google Scholar 

  • Brown, P. A., Gill, S. A., & Allen, S. J. (2000). Metal removal from wastewater using peat. Water Research, 34(16), 3907–3916.

    Article  CAS  Google Scholar 

  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97(9), 1061–1085.

    Article  CAS  Google Scholar 

  • Deive, F. J., Domínguez, A., Barrio, T., Moscoso, F., Morán, P., Longo, M. A., & Sanromán, M. A. (2010). Decolorization of dye Reactive Black 5 by newly isolated thermophilic microorganisms from geothermal sites in Galicia (Spain). Journal of Hazardous Materials, 182, 735–742.

    Article  CAS  Google Scholar 

  • Devesa-Rey, R., Bustos, G., Cruz, J. M., & Moldes, A. B. (2011). Optimisation of entrapped activated carbon conditions to remove coloured compounds from winery wastewaters. Bioresource Technology, 102(11), 6437–6442.

    Article  CAS  Google Scholar 

  • Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., & dos Santos, W. N. L. (2007). Box–Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179–186.

    Article  CAS  Google Scholar 

  • Hardin, A. M., & Admassu, W. (2005). Kinetics of heavy metal uptake by vegetation immobilized in a polysulfone or polycarbonate polymeric matrix. Journal of Hazardous Materials, 126(1–3), 40–53.

    Article  CAS  Google Scholar 

  • Hernández-Apaolaza, L., & Lucena, J. (2001). Fe(III)-EDDHA and -EDDHMA sorption on Ca-montmorillonite, ferrihydrite, and peat. Journal of Agricultural and Food Chemistry, 49(11), 5258–5264.

    Article  Google Scholar 

  • Jeffers, T. H., & Isaacson, A. E. (1994). Peat moss in plastic beads: new waste water treatment. AMC Journal, 80(11), 5–7.

    Google Scholar 

  • Official Journal of European Communities (1990). No 2676/90; Ed. Commission regulation (EEZ) document 390 R 2676.

  • Reynolds, B., Stevens, P. A., Hughes, S., & Brittain, S. A. (2004). Comparison of field techniques for sampling soil solution in an upland peatland. Soil Use Management, 20(4), 454–456.

    Article  Google Scholar 

  • Smieja-Król, B., Fiałkiewicz-Kozieł, B., Sikorski, J., & Palowski, B. (2010). Heavy metal behaviour in peat—a mineralogical perspective. Science of the Total Environment, 408(23), 5924–5931.

    Article  Google Scholar 

  • Socías-Viciana, M. M., Fernández-Pérez, M., Villafranca-Sánchez, M., González-Pradas, E., & Flores-Céspedes, F. (1999). Sorption and leaching of atrazine and MCPA in natural and peat-amended calcareous soils from Spain. Journal of Agricultural and Food Chemistry, 47(3), 1236–1241.

    Article  Google Scholar 

  • Spinti, M., Zhuang, H., & Trujillo, E. M. (1995). Evaluation of immobilized biomass beads for removing heavy metals from wastewaters. Water Environment Research, 67(6), 943–952.

    Article  CAS  Google Scholar 

  • Sun, Q., & Yang, L. (2003). The adsorption of basic dyes from aqueous solution on modified peat–resin particle. Water Research, 37(7), 1535–1544.

    Article  CAS  Google Scholar 

  • Trujillo, E. M., Jeffers, T. H., Ferguson, C., & Stevenson, H. Q. (1991). Mathematically modeling the removal of heavy metals from a wastewater using immobilized biomass. Environmental Science and Technology, 25(9), 1559–1565.

    Article  CAS  Google Scholar 

  • Vecino, X., Devesa-Rey, R., Moldes, A. B., & Cruz, J. M. (2012). Optimization of batch operating conditions for the decolourization of vinasses using surface response methodology. Microchemical Journal, 102, 83–90.

    Article  CAS  Google Scholar 

  • Völz, H. G. (2001). Industrial color testing. Weinheim: Wiley–VCH.

    Book  Google Scholar 

  • Zhou, Y., Lu, P., & Lu, J. (2012). Application of natural biosorbent and modified peat for bisphenol a removal from aqueous solutions. Carbohydrates Polymer, 88(2), 502–508.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the ‘Xunta de Galicia’ for financial support (Programa Ángeles Alvariño and Programa GPC, ref. CN2012/277). X. Vecino is grateful to the University of Vigo for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Vecino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vecino, X., Devesa-Rey, R., Cruz, J.M. et al. Entrapped Peat in Alginate Beads as Green Adsorbent for the Elimination of Dye Compounds from Vinasses. Water Air Soil Pollut 224, 1448 (2013). https://doi.org/10.1007/s11270-013-1448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1448-x

Keywords